

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

TRIPLE MODULAR REDUNDANCY (TMR) IN A
CONFIGURABLE FAULT-TOLERANT PROCESSOR

(CFTP) FOR SPACE APPLICATIONS

by

Rong Yuan

December 2003

 Thesis Co-Advisors: Herschel H. Loomis, Jr.
 Alan A. Ross

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Triple Modular Redundancy (TMR) in a Configur-
able Fault–Tolerant Processor (CFTP) for Space Applications
6. AUTHOR(S) Yuan, Rong

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Without the protection of atmosphere, space systems have to mitigate radiation effects. Several different technolo-

gies are used to deal with different radiation effects in order to keep the space device work properly. One of the radiation ef-
fects called Single Event Upset (SEU) can change the state of a component or data on the bus. A single error is possible to
cause a system failure if it is not corrected.

Besides error correction, a space system also needs the flexibility to be modified or upgraded easily. Consequently,
the idea of having a TMR design instantiated in an FPGA to construct a Configurable Fault-Tolerant Processor (CFTP) devel-
oped. The TMR, which runs one program in three identical soft-core processors with voters, is a scheme used to mitigate an
SEU. The full design of TMR running in an FPGA functions as a System-On-a-Chip (SOC). Both soft-core processor and
FPGA offer the CFTP a great flexibility to be reconfigured.

A complete TMR design includes some fundamental components besides processors and voters such as the Re-
coniler, Interrupt, and Error Syndrome Storage Device (ESSD). These components have their unique function in the TMR de-
sign. They are created and simulated. Factors that affect test bench-settings like processor pipelining are important to always
keep in mind. A component is designed to implement proper functions first. Then it is revised to work with the processor and
memory. The full design for the TMR in this thesis proves its ability to detect and correct an SEU. The follow-on research
suggested is to improve the efficiency and performance of this design.

15. NUMBER OF
PAGES

285

14. SUBJECT TERMS Single Event Upset, SEU, Configurable Fault-Tolerant Processor, CFTP,
TMR, FPGA, System-On-a-Chip, SOC, Reconciler, Interrupt and Error Syndrome Storage Device,
ESSD

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

TRIPLE MODULAR REDUNDANCY (TMR) IN A CONFIGURABLE FAULT
TOLERANT PROCESSOR (CFTP) FOR SPACE APPLICATIONS

Rong Yuan

1st Lieutenant, Taiwan Air Force
B.S., Chinese Air Force Academy, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2003

Author: Rong Yuan

Approved by: Herschel H. Loomis, Jr.

Thesis Co-Advisor

Alan A. Ross
Thesis Co-Advisor

John P. Powers
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Without the protection of atmosphere, space systems have to mitigate radiation ef-

fects. Several different technologies are used to deal with different radiation effects in

order to keep the space device work properly. One of the radiation effects called Single

Event Upset (SEU) can change the state of a component or data on the bus. A single er-

ror is possible to cause a system failure if it is not corrected.

Besides error correction, a space system also needs the flexibility to be modified

or upgraded easily. Consequently, the idea of having a TMR design instantiated in an

FPGA to construct a Configurable Fault-Tolerant Processor (CFTP) developed. The

TMR, which runs one program in three identical soft-core processors with voters, is a

scheme used to mitigate an SEU. The full design of TMR running in an FPGA functions

as a System-On-a-Chip (SOC). Both soft-core processor and FPGA offer the CFTP a

great flexibility to be reconfigured.

A complete TMR design includes some fundamental components besides proces-

sors and voters such as the Reconiler, Interrupt, and Error Syndrome Storage Device

(ESSD). These components have their unique function in the TMR design. They are cre-

ated and simulated. Factors that affect test bench-settings like processor pipelining are

important to always keep in mind. A component is designed to implement proper func-

tions first. Then it is revised to work with the processor and memory. The full design for

the TMR in this thesis proves its ability to detect and correct an SEU. The follow-on re-

search suggested is to improve the efficiency and performance of this design.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RADIATION EFFECTS ...1

1. Total Dose Effects ..2
2. Single Event Phenomenon (SEP)..2
3. Single Event Upset (SEU)..2
4. Single Event Latchup (SEL) and Single Event Burnout (SEB).......2

B. FIELD PROGRAMMABLE GATE ARRAY (FPGA)3
C. SOFT-CORE PROCESSORS...4
D. TRIPLE MODULAR REDUNDANCY (TMR)..5
E. ORGANIZATION ...7
F. ADDITIONAL DOCUMENTATION..7
G. CHAPTER SUMMARY..7

II. TMR REVIEW IN PREVIOUS WORK ...9
A. LASHOMB’S DESIGN ...9
B. EBERT’S RESEARCH ...10
C. JOHNSON’S IMPLEMENTATION ...11
D. CHAPTER SUMMARY..12

III. TESTING ENVIRONMENT AND ISE SOFTWARE...15
A. COMPUTER SPECIFICATIONS ...16
B. XILINX ISE SOFTWARE..16
C. CHAPTER SUMMARY..18

IV. KDLX INTRODUCTION...19
A. INSIDE KDLX ...19

1. Function of alu..22
2. Function of regfile ..23
3. Function of pc_control ...23
4. Function of rw_control ...24
5. Function of pipeline..24
6. KDLX Summary ..24

a. Inputs and Outputs ...25
b. Harvard Architecture and Von Neumann Architecture........25

B. PIPELINE CONCEPTS..27
C. MEMORY IN SIMULATION..28
D. KDLX SIMULATION WITHOUT MEMORY..29
E. KDLX SIMULATION WITH MEMORY ..30

1. Implementation Table of Instruction Set 1......................................33
2. Simulation Result of Instruction Set 1 ...34
3. Implementation Table of Instruction Set 2......................................37
4. Simulation Result of Instruction Set 2 ...38
5. Implementation Table of Instruction Set 3......................................41

 viii

6. Simulation Result of Instruction Set 3 ...42
7. Implementation Table of Instruction Set 4......................................44
8. Simulation Result of Instruction Set 4 ...45

F. CHAPTER SUMMARY..47

V. TMR ASSEMBLY ...49
A. 1-BIT VOTER ..49
B. 16-BIT VOTER ..53
C. TMR ASSEMBLY WITHOUT MEMORY ..55

1. Schematic and Simulation 1..56
2. Schematic and Simulation 2..59

D. TMR ASSEMBLY WITH MEMORIES ...62
E. TEST ON FAULT TOLERANCY OF TMR ASSEMBLY67

1. Schematic and Simulation...67
2. Bit Distribution...71
3. Simulation Analysis ...71

F. IMPORTANT SIMULATION CONCEPTS REVIEW.............................76
1. KDLX Was Designed to Work with Asynchronous Memory........76
2. Start with A Simple Test Bench First ..76
3. Test Bench Is Optimized for the Current Design76
4. Keep Old Designs ...77
5. Working on the Copy of Source ...77

G. CHAPTER SUMMARY..78

VI. RECONCILER ..79
A. CONSTRUCTION AND FUNCTION...79
B. SCHEMATIC AND SIMULATION OF RECONCILER ONLY.............81
C. SCHEMATIC AND SIMULATION OF RECONCILER WITH

KDLX..82
D. TIMING CONCERNS...85
E. CHAPTER SUMMARY..86

VII. INTERRUPT..87
A. CONSTRUCTION AND FUNCTION...87
B. SCHEMATIC...90
C. SIMULATION ...92
D. CHAPTER SUMMARY..95

VIII. THE FULL DESIGN WITHOUT ESSD ...97
A. SCHEMATIC...97
B. SIMULATION ...99
C. ERROR ANALYSIS..105
D. CHAPTER SUMMARY..106

IX. THE FULL DESIGN WITH ESSD..107
A. THE FUNCTION OF ESSD ...107
B. THE FULL DESIGN WITH ESSD..110

1. Schematic ..110

 ix

2. Simulation...113
C. CHAPTER SUMMARY..115

X. CONCLUSIONS AND FOLLOW-ON RESEARCH...117
A. OVERVIEW...117
B. CONCLUSIONS ..118
C. FOLLOW-ON RESEARCH...118

1. Modification on Current Design...119
2. Faster Processors ...119

APPENDIX A: SCHEMATICS...123
A. 24-BIT MEMORY ...123

1. Schematic ..123
2. Test Bench...123
3. Simulation Result ...124

B. KDLX WITHOUT MEMORY...124
1. Schematic ..124
2. Test Bench...124
3. Simulation Result ...125

C. KDLX WITH MEMORIES..125
1. Schematic ..125
2. Test Bench of Instruction Set..127
3. Tables and Simulation Results of Instruction Sets127

a. Implementation Table of Instruction Set 1127
b. Simulation Result of Instruction Set 1129
c. Tables of Registers and Memories in Simulation 1131
d. Implementation Table of Instruction Set 2132
e. Simulation Result of Instruction Set 2133
f. Tables of Registers and Memories in Simulation 2135
g. Implementation Table of Instruction Set 3136
h. Simulation Result of Instruction Set 3137
i. Tables of Registers and Memories in Simulation 3138
j. Implementation Table of Instruction Set 4139
k. Simulation Result of Instruction Set 4140

D. TMR ASSEMBLY WITHOUT MEMORIES ..143
1. Schematic ..143
2. Test Bench...145
3. Simulation Result ...145

E. TMR ASSEMBLY WITH MEMORIES ...146
1. Schematic ..146
2. Test Bench...148
3. Simulation Result ...148

F. FAULT-TOLERANT TESTING ...149
1. Schematic ..149
2. Test Bench...151
3. Memories Pre-configuration...151
4. Simulation Result ...152

 x

G. RECONCILER ..153
1. Schematic ..153
2. Test Bench...153
3. Simulation Result ...153

H. RECONCILER WITH KDLX AND MEMORY......................................154
1. Schematic ..154
2. Test bench...155
3. Simulation Result ...155

I. INTERRUPT..156
1. Schematic ..156
2. Test Bench...156
3. Simulation Result ...157

J. INTERRUPT WITH KDLX AND MEMORY ...157
1. Schematic ..157
2. Test Bench...159
3. Memory Pre-configuration and Results...160
4. Simulation Result ...161

K. THE FULL DESIGN WITHOUT ESSD ...162
1. Schematic ..162
2. Test Bench...164
3. Memory Pre-configurations..165
4. Simulation Result ...166

L. THE FULL DESIGN WITH ESSD..168
1. Schematic ..168
2. Test Bench...170
3. Simulation Result ...171

APPENDIX B: KDLX INSTRUCTION SET DESCRIPTION173

APPENDIX C: VHDL CODE ...183
A. RECONCILER ..183
B. INTERRUPT..186
C. RECONCILER FOR THE FULL DESIGN..190
D. ESSD..194
E. KDLX..200

1. alu.vhd...201
2. alu.vhd...202
3. alu_logic.vhd...204
4. AO22.vhd ..204
5. core.vhd...205
6. Dest_Decoder.vhd ..211
7. dlx.vhd...212
8. dlx_out.vhd ...213
9. increment.vhd...228
10. IO_Pads.vhd ...229
11. log_barrel.vhd ..230
12. pc_control.vhd..232

 xi

13. pipeline.vhd...234
14. regfile.vhd ...239
15. rw_control.vhd ...244
16. scan_reg.vhd...245
17. twelve_bit_reg_single.vhd ...245
18. twenty_four_bit_reg_single.vhd ...248
19. word_mux16.vhd..249
20. word_mux3.vhd..250
21. word_mux4.vhd..251
22. word_reg_single.vhd..252
23. word_set.vhd...255
24. zero_test.vhd...256

APPENDIX E: GLOSSARY..257

LIST OF REFERENCES..259

INITIAL DISTRIBUTION LIST ...261

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF FIGURES

Figure 1. Composition of FPGA (From Ref. [3].)...3
Figure 2. Basic TMR Concept (After Ref. [1].) ..6
Figure 3. Microprocessor TMR Concept ..6
Figure 4. CFTP Conceptual Diagram (From Ref. [9].) ...10
Figure 5. Full TMR Design Schematic (From Ref. [5].)...13
Figure 6. Xilinx ISE Project Navigator Logo..17
Figure 7. Xilinx ISE ModelSim Logo...17
Figure 8. Inside KDLX..20
Figure 9. Inside core..21
Figure 10. Schematic Symbol of KDLX...24
Figure 11. Harvard Architecture ...26
Figure 12. KDLX Connections with Two Memories..26
Figure 13. KDLX with One Memory..26
Figure 14. Pipeline Execution in KDLX...27
Figure 15. 24-bit Memory Simulation Result ...28
Figure 16. KDLX Simulation..29
Figure 17. KLXD with Instruction and Data Memory..32
Figure 18. Simulation of KDLX with Memory...34
Figure 19. 1-Bit Majority Voter (After Ref. [1].)..49
Figure 20. Voter with Error Detection (After Ref. [1].)..50
Figure 21. Voter with Added Reliability (After Ref. [1].) ..51
Figure 22. Complete Majority Voter (After Ref. [1].) ..52
Figure 23. Schematic Symbol of 1-Bit Majority Voter...53
Figure 24. Sixteen 1-Bit Voters...54
Figure 25. Schematic Symbol of 16-Bit Voter..55
Figure 26. TMR Assembly..57
Figure 27. TMR Assembly Simulation 1-1 ...58
Figure 28. TMR Assembly Simulation 1-2 ...59
Figure 29. Modified TMR Assembly ..60
Figure 30. Modified TMR Assembly Simulation 2-1 ...61
Figure 31. Modified TMR Assembly Simulation 2-2 ...61
Figure 32. Schematic Symbol of the Modified TMR Assembly.......................................62
Figure 33. Modified TMR Assembly with Memories...63
Figure 34. Simulation of Modified TMR Assembly with Memories................................64
Figure 35. Simulation Result of First TMR Assembly with Memories66
Figure 36. Schematic for Fault-Tolerant Testing ..68
Figure 37. Simulation of Fault-Tolerant Testing...69
Figure 38. Simulation of Fault-Tolerant Testing (continued) ...70
Figure 39. Simulation of Fault-Tolerant Testing (continued) ...70
Figure 40. Bit Distribution of CID_1, CID_0 and ERR Buses..71
Figure 41. ERR Analysis for the First Opcode..72

 xiv

Figure 42. CID_1 and CID_0 Analysis for the First Opcode..72
Figure 43. Address Comparison for the First Opcode...73
Figure 44. ERR Analysis at Point 13...73
Figure 45. Data comparison for R3...74
Figure 46. CID_1 and CID_0 Data Portion Analysis at Point 1374
Figure 47. CID_1 and CID_0 Address Portion Analysis at Point 13................................75
Figure 48. Illustration of Reconciler Function ..79
Figure 49. State Machine of the Reconciler ..80
Figure 50. Schematic Symbol of Reconciler...81
Figure 51. Simulation Result of the Reconciler ..81
Figure 52. Schematic of Reconciler with KDLX and Memory ..83
Figure 53. The First Part of the Simulation Result for Reconciler....................................84
Figure 54. Timing Relationship Among Clocks ...85
Figure 55. State Machine of Interrupt...88
Figure 56. New State Machine of Interrupt ..89
Figure 57. Schematic Symbol of Interrupt..90
Figure 58. Schematic of the Interrupt with KDLX and Memories91
Figure 59. Partial Simulation Result of Interrupt with KDLX ...93
Figure 60. Partial Simulation Result of Interrupt with KDLX (continued)......................94
Figure 61. The Full Design..98
Figure 62. Memory Pre-configurations ...100
Figure 63. Simulation of the Full Design without ESSD ..101
Figure 64. Flowing Direction of the Input Data in TMRA ..102
Figure 65. Simulation of the Full Design without ESSD (continued)103
Figure 66. Simulation of the Full Design without ESSD (continued)105
Figure 67. Error Analysis for the Full Design...106
Figure 68. State Machine of ESSD ..108
Figure 69. Function of ESSD Storing..109
Figure 70. Schematic Symbol of ESSD...110
Figure 71. Schematic of the Full Design with ESSD ..112
Figure 72. Simulation of the Full Design with ESSD..113
Figure 73. Detail Timing at point 5 in previous simulation ..114
Figure 74. Simulation of the Full Design with ESSD (continued)115
Figure 75. Flowchart of Error Correction for TMR design...118

 xv

LIST OF TABLES

Table 1. Radiation Effects and Mitigation (From Ref. [1].) ..2
Table 2. Virtex FPGA family members (From Ref. [6].) ..4
Table 3. Computer Specifications for Simulation..16
Table 4. 2’s Complement Numbers ...22
Table 5. Function of Pins on KDLX..25
Table 6. Instruction Set 1 ...34
Table 7. Tables of Registers and Memories in Simulation 1 ...36
Table 8. Instruction Set 2 ...38
Table 9. Tables of Registers and Memories in Simulation 2 ...40
Table 10. Instruction Set 3 ...41
Table 11. Tables of Registers and Memories in Simulation 3 ...43
Table 12. Instruction Set 4 ...44
Table 13. Tables of Registers and Memories in Simulation 4 ...46
Table 14. Truth Table of A 1-Bit Voter (From Ref. [1].) ..50
Table 15. Truth Table of Voter with Error Detection (From Ref. [1].)51
Table 16. Truth Table of Voter with Added reliability (From Ref. [1].)52
Table 17. Truth Table of Complete Majority Voter (From Ref. [1].)..............................53
Table 18. Time Constraints of Test Bench for Modified TMR Assembly65
Table 19. Instruction And Data Memory Maps ...69
Table 20. Tables of Registers and Memories in Simulation ..92
Table 21. Commercial Soft-Core Processors...120
Table 22. OpenCores..122

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to thank all the professors, technicians, and students of the Naval

Postgraduate School who made this research possible. Many of them may not realize the

magnitude of their efforts, but the author does.

Special thanks are owed to these individuals for their assistance:

To Professors Loomis and Ross for your support and patience with me throughout

this research. Your knowledge and experience always inspires my invention.

To Professor Butler for providing good foundations in microprocessor systems.

To Professor Durren for the assistance in understanding VHDL code.

To Dr. Kenneth Clark for your assistance in understanding the function of the

KDLX and always answering my questions in no time.

To Captain Charles Hulme for your friendship, for helping me get through many

courses, and for standing my horrible English so long.

To David Rigmaiden for helping me set up the Xilinx software.

To Major Dean Ebert and Lieutenant Steven Johnson for your efforts on your the-

sis works which are great reference for any further research.

And most importantly, I wish to thank my family. Your support and encourage-

ment let me study carefree overseas.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

EXECUTIVE SUMMARY

Space systems suffer radiation effects in space. These radiation effects occur ran-

domly and are hard to predict. The combination of effects can destroy a system or make

it functionless. Therefore, different methods are presented to protect space devices such

as radiation hardened or fault tolerant systems. Space systems are usually tested and

simulated several times before launching in order to minimize the probability of losing

control of it after launch.

The Single Event Upset (SEU) is a radiation effect which causes a bit flipping in a

device. This effect is not strong enough to destory a system but may cause a series of er-

rors that finally make the system unusable. This error should be corrected in time and

Triple Modular Redundancy (TMR) is one of the schemes to mitigate this problem.

The TMR design selected for the CFTP is to instantiate three soft-core processors

with some other components into a fault tolerant Field Programmable Gate Array

(FPGA). The FPGA is easily reconfigured and the soft-core processor has great flexibil-

ity to be programmed or modified. Those features give a TMR design the ability to be

maintained and upgraded. The processor chosen for TMR design is a 16-bit Reduced In-

struction Set Computer (RISC) processor named KDLX. It is a 5-stage pipelined proces-

sor with Harvard architecture. The pipeline affects the settings of a test bench and the in-

fluence is discussed in this thesis. A full simulation for all instructions is introduced to

help understand functions of different operation codes.

To stop an error being propagated, the TMR has to correct the error once it is de-

tected. Three processors in TMR should always execute the same instruction and all ac-

tions should be identical. Any inconsistency found among these three processors will be

considered as an error. Then the TMR needs to have a function to stall the current opera-

tion and correct errors in processors. For error detection and correction, the following

four major components are designed: majority bit voter, Reconciler, Interrupt, and Error

Syndrome Storage Device (ESSD).

 xx

Voters are connected at output pins or buses of processors. Therefore all output

signals are voted. The majority bit voter takes two out of three identical signals as the

output signal and reports the occurrence of an error if one of the three is different. The

voter is able to correct an error immediately and indicate where the error is. Construction

of three processors with voters called the TMR Assembly.

Due to different architectures between the processor and memory, a Reconciler is

responsible for coordinating the difference between these two architectures. The solution

is to run memory twice as fast as the processor and let the Reconciler route data of mem-

ory. The memory acts as an instruction memory at the first half of processor clock cycle

and acts as a data memory at the other half cycle. Thus, the processor thinks it is con-

nected with two different memories. The Reconciler in TMR for this thesis is purely a

reconciler and does nothing directly related with error detection or correction. This pu-

rity makes it independent of other components.

When an error is detected by voters, the Interrupt starts the Interrupt Service Rou-

tine (ISR). In order to store and read properly, this component has to run as fast as the

Reconciler. The Interrupt replaces the current instruction on the bus with a TRAP in-

struction when an error occurs. This TRAP instruction will be fetched by all processors

and executed. The ISR is a special program designed to correct inconsistency of contents

in registers between three processors. At the end of ISR, the Interrupt injects a Jump in-

struction into instruction bus and leads processors back to the normal operation.

The ESSD latches some specific data from the buses when an error occurs. These

specific data are called the error syndrome, which is unique for one specific error. Error

syndromes are very useful for health checking or error debugging to a system. In order to

latch data at the correct timing, the ESSD has to run as fast as the Reconciler (or Inter-

rupt). The ESSD does not pass its data to the Reconciler when storing. Instead, it takes

over the whole memory and saves error syndromes while the processors are deliberately

stalled.

The full design consolidates all components to construct a complete TMR design.

The design was simulated and its function was proved in this thesis. This premiere de-

 xxi

sign gives a big picture of how errors are detected and corrected. Furthermore, interac-

tion between different components is one of the important concepts to learn. The full de-

sign has four different clocks. The Reconciler, Interrupt and ESSD are using the same

clock speed since none of them needs the signal from another. The other three clocks are

KDLX clock, memory clock and one special clock for the latch.

For further research, extra circuits or components are needed to improve the abil-

ity of error correction on different components. Considering an error generated in the

Reconciler, the error may never be found and data stored to memory is always wrong.

Reinforcing reliability of some components is something that needs to be considered.

The current design may be modified to meet the requirements of advanced functions. Fi-

nally, searching for a better processor to enhance the performance is required as well.

Commercial processors usually come with a software package and have better customer

support. OpenCores that people share to the public are free but a user needs to have

backgrounds of coding in order to realize the core.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

An electronic device in space environment suffers an extreme challenge to its re-

liability due to the lack of atmosphere and huge temperature variation. Without protec-

tion of atmosphere, a space system is exposed in a very unique circumstance which con-

tains cosmic rays (85% protons, 14% alpha particles and 1% heavy Nuclie), solar events

(X-rays, heavy ions and protons) and trapped radiation (electrons and protons trapped in

magnetic field of earth, called Van Allen Belt). Thus, radiation effects on a space elec-

tronic system become one of the most important issues that need to be solved. Those ef-

fects include Total Dose Effects and Single Event Effects.

A number of methods have been presented to mitigate radiation effects. Using

soft-core Triple Modular Redundancy (TMR) on a Field Programmable Gate Array

(FPGA) provides a practical solution to Single Event Effects which is low cost and offers

flexibility to be reconfigured and easily developed. The Configurable Fault-Tolerant

Processor (CFTP) is a system based on this concept utilizing Commercial-Off-the-Shelf

(COTS) technology and features of TMR soft-core microprocessors on FPGAs as a Sys-

tem-On-a-Chip (SOC).

A. RADIATION EFFECTS

Radiation effects on a space system vary depending on different altitude, location

and solar events. For example, the inner Van Allen Belt, from 650 km to 6300 km above

Earth’s surface, is composed mostly of protons about 10 to 15 MeV (1 MeV = 106 eV,

1 electronvolt ≈ 1.6x10-19 J). As a satellite travels in Low-Earth Orbit (LEO), from 160 to

6000 km, it will have many chances to be affected by protons. The scheme used to solve

radiation problems on this satellite must be different from the one that travels in geosta-

tionary orbit, whose altitude is 35,780 km. Since a satellite in geostationary orbit has al-

most no protection by Earth, it needs to be more radiation-hardened (RADHARD) or ra-

diation-tolerant. Major effects caused by radiation are Total Dose Effects and Single

Event Effects (SEE) including Single Event Phenomenon (SEP), Single Event Upset

(SEU), Single Event Latchup (SEL) and Single Event Burnout (SEB) [1].

2

1. Total Dose Effects

Total Dose Effects refer to total radioactive particles that a device accumulates

over its lifetime. This accumulation degrades the performance until the device becomes

totally useless. The general solution to mitigate these effects so far is using radiation-

hardening or shielding techniques, but such methods can only extend the end of life of the

chip, not totally eliminate this problem.

2. Single Event Phenomenon (SEP)

Single Event Phenomenon is the situation where a transistor resets to its original

state due to the particle passing through. This causes unpredictable results and may or

may not affect operation of a system.

3. Single Event Upset (SEU)

Single Event Upset is a logical bit changing because of the radiation. A bit flip-

ping may cause a chain reaction and consequently result in an unrecoverable error of a

system. TMR is a mitigation scheme using three identical processors to run a same in-

struction set and voting all results to detect and correct such an error.

4. Single Event Latchup (SEL) and Single Event Burnout (SEB)

Single Event Latchup occurs when a parasitic transistor is formed by a spurious

current spike like heavy cosmic ray [2]. This puts a circuit into a high-operating-current

mode that has to be cleared by power off-on reset. Hard errors can drag the bus voltage

down or even burn out the circuit. This is called Single Event Burnout.

Some techniques used to mitigate radiation effects are shown in Table 1.

Radiation Effects Mitigation Techniques

Total Dose

Radiation-Hardening
Silicon-On-Sapphire
Silicon-On-Insulator
Thin-Gate-Oxide

Shielding

Single Event Latchup (SEL) Radiation Hardening
Guard Rings

Single Event Upset (SEU)
Quadded Logic
Software Fault Tolerance
Tripple Modular Redundancy

Table 1. Radiation Effects and Mitigation (From Ref. [1].)

3

B. FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Sequential programmable devices are composed of gates and flip-flops and are

able to perform a variety of functions. Three major types of sequential programmable

devices are the Sequential (or simple) Programmable Logic Device (SPLD), the Complex

Programmable Logic Device (CPLD) and the Field Programmable Gate Array (FPGA).

A SPLD which integrates the AND-OR array and flip-flops is the smallest and the cheap-

est form of programmable logic. A CPLD is similar to a SPLD except that it is a collec-

tion of individual PLDs. Interconnections between PLDs are programmable as well. A

typical CPLD is equal to 2 to 64 SPLDs. An FPGA consists of logic cells surrounded by

a ring of programmable I/O blocks. Each cell is able to implement a logic function which

is done by programming and all interconnections between cells are also programmable.

Figure 1. Composition of FPGA (From Ref. [3].)

Unlike the FPGA, PLDs need to be physically removed from a system and repro-

grammed by specific methods. This disadvantage makes a space system made of these

devices almost impossible to be modified or upgraded. Programmed circuits can be eas-

ily instantiated on a FPGA without any specific requirements. This feature reduces time-

to-market of a product as well. Comparing with other device, FPGAs are less power con-

suming, less expensive, have large-scale advantages of programmable logic and high

flexibility [4].

The FPGA selected for CFTP is the Virtex XCV800, a member in Virtex FPGA

family of Xilinx1. Table 2 shows the specification of some Virtex family members. A

1 Xilinx is a registered trademark of Xilinx Corporation.

4

CLB is a Configuration Logic Block which can be configured to represent any 4-input

switching function to define a design. CLBs are also connected to each other by pro-

gramming as part of the design process. A design can be parsed to multiple CLBs for full

implementation if it is too large to fit into a single CLB [5].

Table 2. Virtex FPGA family members (From Ref. [6].)

One of the reasons for choosing this FPGA was because its pin configuration is a

flat-pack. This type of interface is spaceflight certified and has been used in space for

years. Some of the newest and largest FPGAs nowadays are using ball grid array (BGA)

connections which are not only difficult to be attached to a printed circuit board, but also

not qualified for space applications [5].

C. SOFT-CORE PROCESSORS

A soft-core processor is a set of source codes expressed in hardware description

language (HDL) which express the behavior of a real processor. It is a synthesizable

HDL design and has no explicit hardware realization. This type provides great flexibility

but has limitation of performance and predictability. A hard-core processor, on the other

hand, provides high performance but is not flexible.

Since a soft-core processor can be easily instantiated on a FPGA, a designer has a

wide range of selections and combinations. A soft core can be optimized for different

FPGA sizes and characteristics to improve performance, giving the most cost-efficient

solution for target applications. A hard core which has specific function blocks needs to

work with special FPGA device. The need for these specific FPGAs is limited; therefore

Devic« System Gates CLB Array Logic Cells
Maximum

Available I/O
Block RAM

Bits
Maximum

SeleclRAM4-'" Bits

XCV50 57.906 16x24 1,728 180 32,768 24,576

XCV100 109,904 20x30 2,700 180 40,960 38,400

XCV1S0 164,674 24x36 3,888 260 49,152 55,296

XCV200 236,666 28x42 5,292 284 57,344 75,264

XCV300 322,970 32x48 6,912 316 65,536 98,304

XCV400 468,252 40x60 10,800 404 81,920 153,600

XCV600 661,111 48x72 15,552 512 98,304 221,184

XCVBOO 888,439 86x84 21,168 512 114,688 Ml,056

XCV1000 1,134,022 64x96 27,646 512 131,072 393,216

5

they do not have the large-scale manufacturing benefits which forces vendors to support

few FPGA packages. Another disadvantage of using a hard core is if a problem is found

in one version, all specific FPGAs supporting that version have to be revised. Hard cores

are good for big and commonly used functions like a RAM [4].

The soft-core processor chosen for this iteration of the CFTP is a 16-bit Reduced

Instruction Set (RISC) KDLX processor. The DLX processor is coded in HDL and de-

scribed in Hennessy and Patterson’s Computer Architecture: A Quantitative Approach

[7]. The KDLX processor is a revision of DLX processor by Dr. Kenneth Clark that was

used on complex digital systems to predict SEU tolerance as described in his dissertation

[8]. Therefore, one of the reasons to use this processor is that it had been designed and

tested.

D. TRIPLE MODULAR REDUNDANCY (TMR)

Once a system is launched to space, it is hard and expensive to maintain it. In or-

der to correct errors caused by radiation, different ways have been presented and actually

used in space. Using RADHARD devices or fault-tolerant designs are the most common

ways. TMR is one of the solutions to make a circuit be able to tolerate occurrence of an

error and correct it. This is done by software so it is simple and low-cost. Taking advan-

tage of the FPGA, the TMR instantiated inside becomes easily modified and upgraded in

the future.

Basically, a TMR system is composed of three identical devices and voting logic

as shown in Figure 2. The voting logic is a majority voter which takes the majority of the

inputs to be the output value. Since Devices B and C are replication of Device A and they

all accept the same input value, the outputs of A, B and C should be consistent in theory.

Due to radiation effects in space, one of these three devices may have an error inside and

generate a different output. This inconsistency will be caught and corrected by voting

logic. Thus, the voted output is always a correct value under the assumption of a single

error.

6

Device A

Device B

Device C

Input

Output A

Output B

Output C

Voting
Logic Voted Output

Error Corrected Signal

Figure 2. Basic TMR Concept (After Ref. [1].)

When the TMR concept is applied to a microprocessor, it is illustrated in Figure 3.

All output signals of the CPU are voted; therefore no error should exist at outputs of vot-

ers. Any error that occurs represents that one of the CPUs has an error inside. If that er-

ror is not corrected by some way, it may result in more errors and finally become unre-

coverable. Thus, the Error Encoder in Figure 3 is a device that will analyze error signals

offered by voters and find out which CPU generates the error. Once the faulty CPU is

identified, some extra circuits will interrupt all three processors and correct that error.

When a simple circuit acting as a system is instantiated on a chip (e.g., FPGA), it is

called a system on a chip (SOC). Recall that a soft core is not efficient for complex func-

tions; therefore the memory block in Figure 3 is an external chip.

Address

Input Data

Control

CPU A

Address

Input Data

Control

CPU B

Address

Input Data

Control

CPU C

Address
Voter

Error
DecoderControl

Voter

Data
Voter

Common
Inputs

Memory

Data
I/O

To output
Interface

Figure 3. Microprocessor TMR Concept

The CFTP implements these basic ideas. The circuits to do interruption and cor-

rect an error are quite complicated. All concepts for constructing a complete TMR de-

sign will be explained in the rest of chapters.

7

E. ORGANIZATION

Chapter II reviews previous theses and gives other information related to the

CFTP. Chapter III describes the testing environment and introduces the software used in

the thesis. Chapter IV discusses the function and features of the KDLX. Simulations of

all instructions for the KDLX are shown in this chapter. Chapter V goes over the design

of voter logic in previos theses then constructs the TMR Assembly and simulates it.

Chapter VI describes the Reconciler used to coordinate different architectures in this de-

sign. Chapter VII is a description of the Interrupt module designed for correcting errors

in the registers. Chapter VIII shows the simulation of the full design without any cir-

cuitry to handle the reporting of errors. This chapter explains the function of the ISR and

how different components work together. Chapter IX introduces the component used to

store necessary data for future analysis when an error occurs. This component is Error

Syndrome Storage Device and its function of the full design is verified in this chapter.

Chapter X contains conclusions and topics for follow-on research.

F. ADDITIONAL DOCUMENTATION

Appendix A contaions all schematics, test benches, and simulation results dis-

cussed in this thesis. Some the the figures are zoomed in to provide better views of the

small numbers on the buses. Appendix B is the description of the whole instruction set

for the KDLX. Appendix C contains VHDL codes for all components designed in this

thesis. The VHDL files for the KDLX processor are also included.

G. CHAPTER SUMMARY

This chapter has given fundamental understanding of radiation effects, FPGA and

soft-core processors. The general concept of a TMR design has been introduced as well.

Previous thesis work of CFTP will be reviewed in next chapter and the TMR technique

for correcting an error will also be described. Reading old thesis work is always a good

starting point of learning. Experience will be shared and direction for following research

will be pointed out.

8

THIS PAGE INTETIONALLY LEFT BLANK

9

II. TMR REVIEW IN PREVIOUS WORK

To construct a CFTP design is a really complex work and needs a significant

amount of time to finish. In order to have a flawless design, lots of conditions need to be

considered and all problems should be solved in a reasonable way. Selecting components

may take few days or months depending on how much data or information is collected.

Decisions may still be changed at the last minute due to some unpredictable situations or

inevitable factors. Any change in the final design on a component sometimes will cause

a series of modifications to others. It is obvious that building a fully-functional CFTP

does take much effort and designers have to really understand how circuits relate each

other in order to revise or debug it. Unfortunately, graduate students at Naval Postgradu-

ate School only stay a short amount of time. A big design like CFTP is chopped into

several segments and assigned to different students. In this time constraints, students not

only need to realize what previous students have done but also take up a design in pro-

gress. Most of the time, students picking up the segments do not have a chance to learn

directly from students who have worked on this design before. Thus, the thesis becomes

an important interface of experience inheritance between generations of students.

A. LASHOMB’S DESIGN

Peter A. LaShomb [1] expressed many concepts in both TMR design and FPGA

selection. Traditional solutions for radiation effects were introduced including hardware

redundancy, like Quadded Logic, and software improvement for fault tolerance, like time

redundancy or software redundancy. In the TMR section, RADHARD and COTS were

compared in availability, performance and cost. Potential benefits of those two were

clearly described as well. The processor used in his TMR design was KCPSM, an 8-bit

microcontroller. It was free downloaded from Xilinx’s website and served as a readily

available test-case processor while waiting availability of other high performance proces-

sors. Constructing and testing of the TMR were done on Xilinx Foundation series soft-

ware which was available at Naval Postgraduate School (NPS). Voters and an error en-

coder were designed and explained in detail. Other issues including interrupt routine and

memory/error controller were left as follow-on research.

10

In the FPGA section, different FPGAs were compared in a number of aspects.

Five major parameters for choosing a good FPGA were gate count, availability of hard-

ware and software, packages (flat-pack vs. ball-grid-array), re-programmablility and ra-

diation tolerance. The Xilinx XCV800 was chosen as the candidate at that time for future

implementation.

B. EBERT’S RESEARCH

A complete CFTP conceptual design presented was in Dean A. Ebert’s thesis [9].

For hardware considerations, his thesis discussed why specific components were chosen

and how chips communicated in an integrated circuit. More detail and realistic concepts

about FPGA and CFTP configurations were described than before and chips were se-

lected based on a number of space-environment considerations. Discussion of system

memory was important and first described in this thesis. Memory configuration control-

ler, functional logic and glue logic were also new ideas never talked about in previous

work. The TMR circuitry was not one of the main topics in his research, but from his

work one can visualize the external connections of the FPGA and understand the role of

TMR in the CFTP process. Figure 4 illustrates the layout of the board he developed.

Figure 4. CFTP Conceptual Diagram (From Ref. [9].)

11

The CFTP will be launched into LEO orbit on two satellites, NPSAT-1 and Mid-

STAR-1, in 2006. How the Department of Defense and Navy Space Experiment Review

Board (SERB) and the Space Test Program (STP) Office were involved with these two

satellites was described in his thesis. Other documents related to design descriptions and

requirements of the STP office were attached as appendixes as well.

C. JOHNSON’S IMPLEMENTATION

Steven A. Johnson [5] focused his work on TMR design. The essential compo-

nents to make a circuit be fault-tolerant were identified. Circuits designed in Lashomb’s

thesis could not be used due to different design architecture and the significant upgrade of

computer-aided-design software employed. Basic concepts for constructing a TMR cir-

cuit were still the same, but implemented in a different way.

KDLX, a 16-bit processor, better than 8-bit KCPSM processor, was the processor

used in Johnson’s research. His design consisted of tmra, Interrup, Error Syndrome Stor-

age Device (ESSD) and Reconciler. The block named tmra consists of three KDLX

processors and six voters. All processor output signals have to be voted. Interrup was

compiled in a state diagram and used to trigger the interrupt service routine to correct an

error inside the KDLX. ESSD was used to save the error syndrome in order to offer a log

file for analysis. The KDLX is a Harvard architecture device which has two address

buses and two data buses, a set of address and data bus for instruction memory and an-

other set for data memory. The off-chip memory for the CFTP is Von Neumann architec-

ture. The Von Neumann architecture has only one address bus and one data bus. Due to

this difference, a Reconciler was designed to coordinate different timing constraints in

order to make a proper read and write on memory. The difference between Harvard and

Von Neumann architecture will be explained again while introducing KDLX in Chapter

IV.

Johnson’s full design schematic is shown in Figure 5. The memory is external to

FPGA and it should be connected to Reconciler located at the top left corner. Normally,

tmra communicates with Reconciler in order to access memory. Meanwhile, the syn-

drome data is latched into ESSD regardless of an error occurring or not. When an error

occurs, a signal will be sent to Interrup and starts the Interrupt Service Routine (ISR). At

12

this moment, KDLX is stalled and ESSD saves the error syndrome to memory through

Reconciler. Then Interrup generates a TRAP instruction to KDLX and leads the whole

circuit into an error correction condition. When KDLX sees the TRAP instruction, it

jumps to a specific memory location and the program counter value before the jump is

saved in an interrupt address register (IAR), a special register inside KDLX. In the error

correction condition, the contents of all registers inside KDLX are saved to memory

through voters. Then, each register is reloaded from memory. The purpose for doing this

step is to correct any inconsistencies of the registers in all three KDLX processors. Since

all contents have to pass voters while saving, any error inside any register will be cor-

rected.

The last instruction in ISR is Return From Exception (RFE). This instruction in-

dicates the end of ISR and the program counter saved in IAR will be loaded back to the

KDLX. The logic gate set at the bottom in Figure 5 is a simple encoder of the RFE in-

struction which tells Interrup to stop the ISR. Finally, the whole circuit goes back to its

normal operation.

This circuit primitively illustrated the complexity of the design and was built

based on theory. Simulations and timing problems were left as follow-on research. It

was proved on software that with such huge circuit built inside, the XCV800 FPGA still

had a plenty of space and I/O blocks available.

D. CHAPTER SUMMARY

This chapter introduces work done by previous graduate students to give a direc-

tion where other resources are. This thesis mainly focuses on the TMR design and fol-

lows concepts in Lashomb and Johnson’s research. The primitive design has been done

and general concepts have been given. The Interrup takes over the whole circuit when an

error occurs. Specific locations in memory are reserved for ISR and storing error syn-

dromes. No other instructions should be able to access these locations.

In the next chapter, the testing environment and ISE software are introduced. De-

veloping a consistent testing environment is important in order to have the right compari-

son. A description of software tools is also often useful information for a reader. This

helps people understand more about simulation.

13

Figure 5. Full TMR Design Schematic (From Ref. [5].)

1 .

I t I

!: i i

I'rm \^

i\MM

1

91-idna r

, 9i.idna

nl'^'
" \ \ \' i

i i J

T

n
M

^ Ji a 9 s

kkhkm^

AAAAAAAA

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

III. TESTING ENVIRONMENT AND ISE SOFTWARE

It is hard to build a circuit without simulating it since that is the cheapest and fast-

est way to verify if a design works or not. The software used for simulation and the one

used for constructing circuits do not need to be made by the same company. Different

programs may use different ways to compile code or run simulations. A circuit built via

some specific functions offered in one program may not fit into other programs. There-

fore, a designer using programs made by different persons or companies sometimes face

the problem of incompatibility. This issue can be solved if a package of service is

bought. Generally speaking, products made by the same company are more compatible

with each other and it is easier for that company to provide complete customer services.

Simulation is a very important component of design. A good design without a

proper simulation may have degraded performance or efficiency. Sometimes inaccurate

simulation results can mislead a designer into modifying something which is not sup-

posed to be modified. A good simulation result could not only prove one’s design but

also help others understand the concept one embodies in a design. In terms of thesis re-

search, simulation helps the designer and others to verify the design without spending too

much time. Follow-on students can simply rerun the program and prove the consistency.

All settings of test benches for simulations will be offered in this thesis. This kind

of information is usually not available on a lot of testing or simulation. Providing the

simulation result without providing parameters means that others may not be able to un-

derstand the testing backgrounds and may prevent people from building an identical test

bench. This is not important for a reader on the web, but it is important for a graduate

student working on a thesis. First, a program sometimes crashes and files will be lost for

some reasons which means someone may never get the same simulation outputs. Second,

a modified circuit sometimes needs a new test bench for it. Without those parameters,

simulation will be done under different testing environments and performance improve-

ment may not be proved.

16

A. COMPUTER SPECIFICATIONS

System performance is often an important factor for testing. Running a program

on a slow machine takes longer time than on a fast machine but the program result should

be the same. When considering timing issues, performance of a system can be an impor-

tant role. A slow computer basically cannot handle large amount of data and sometimes

forces a user to reboot. As the TMR design gets more complicated, simulation will take

longer for sure. The speed of how many data per second that a system can handle may

affect the accuracy of simulation. Specifications of testing environment are always stated

in a lot of computer magazines especially when testing a new hardware performance.

The TMR design so far is not so complicated that it needs a high performance computer

to simulate it. The information offered in Table 3 can be used as a reference in future

thesis work.

Model IBM ThinkPad A31 (2652Q5U)
Processor Pentium®2 4 2.0 GHz
Memory 1 GB PC2100 DDR SDRAM
Hard Drive 40 GB 4200 RPM
Operating System Windows 2000 Professional
OS version 5.0 Service Pack 3
Video Card Mobility Radeon 7500 AGP

Table 3. Computer Specifications for Simulation

B. XILINX ISE SOFTWARE

The software used for constructing TMR design is a package called ISE made by

Xilinx®3, one of the largest FPGA manufactures in the world. This software is available

at NPS and is used in labs for some courses. Students who want to do FPGA design

should have basic understanding of this program. In order to do this research, it was nec-

essary to learn about ISE and its associated simulator from the Xilinx website [10], an in-

depth tutorial [11] or personal experience.

2 Pentium is a registered trademark of Intel Corporation.
3 Xilinx is a registered trademark of Xilinx Corporation.

17

ISE 5.2.03i was the version used for this thesis. Project Navigator was the overall

controller of the ISE design system. The other important program used in this thesis

called ModelSim®4 is a powerful simulation tool. Its full version name is ModelSim XE

II 5.6e. Logos of Project Navigator and ModelSim are shown in Figures 6 and 7.

Figure 6. Xilinx ISE Project Navigator Logo

Figure 7. Xilinx ISE ModelSim Logo

The FPGA selected for CFTP was a Xilinx Virtex XCV800 hq 240 with speed

grade of −4. This is an FPGA with 800 gate equivalents, in a package with 240 pins.

Thus using ISE to develop and simulate the TMR design should be able to achieve the

best design and the most realistic simulation of any other programs.

While this research was being performed, Xilinx released a new version of ISE

6.1i to its customers. Xilinx has warned that loading a project made in an old version of

4 ModelSim is a registered trademark of Mentor Graphics Corporation.

KXILINX
DESIGN SOLimONS

Project Navigator

Peleaw Versioni 5.2.03i

Appllcatlor Ver^or: bulld+F'31-K]

Pe>5trallon TD; 135766720473

Copynghil (c) 1«^?002 tilin., TFH.

All lighr^ re-Lerusi.

Model ^im.
MoclelSim XEII5

Model Technology

18

ISE into ISE 6.1i will make an unrecoverable change and the project can no longer be

read by older ISE software. Since a lot of simulations have been done at this moment and

in order to keep the consistency of all testing environment, simulation on the latest ver-

sion is left as a part of future work.

C. CHAPTER SUMMARY

This chapter summarized hardware and software information along with simula-

tion environment. Simulation may look different in different software versions and

sometimes new error will be generated. Undiscovered errors or potential defects of a de-

sign may be pointed out in the new version software. Sometimes the difference between

new and old program is described in the user guide or on company’s website. It is good

to know primary evolution on new software and expect changes on old design. Work be-

comes efficient if one can exploit a program’s features and functions.

Components in TMR design will be introduced in following chapters. Before

constructing a full design, each circuit is built and tested. Therefore, simulation results

will be used to explain how a circuit functions.

19

IV. KDLX INTRODUCTION

The KDLX, a 16-bit processor, is the kernel of this TMR design. Each compo-

nent in the design is connected with a KDLX processor and tested as the final procedure.

The KDLX is the soft-core processor to be used for each of the three processors in the

design of the TMR system as shown in Figure 3. Due to the features of the KDLX pipe-

line and wiring delays, a circuit that works in a test bench by itself sometimes does not

work with a KDLX. Knowing KDLX helps a designer foresee problems when building a

circuit with it. Therefore, understanding KDLX is the first step for constructing a TMR

design.

A. INSIDE KDLX

The KDLX is coded in VHDL, VHSIC (Very High Speed Integrated Circuit)

Hardware Description Language. It is composed of two top-level blocks, core and

IO_Pads, as shown in Figure 8. The core and IO_Pads are names of blocks; core1 and

IO_Pads1 are local block names representing core and IO_Pads, respectively, in the

VHDL file called “dlx.vhd”. The word KDLX at the top right corner is the name of the

outer block. Numbers next to input and output pins represent the width of the bus.

Words in bright green are local signals and none of the interconnections between these

local pins are accessible from the outside (e.g., the connection between In_Data on

IO_Pads1 and Input_data on core1). All pins on the left side are input signals and all

pins on the right side are output signals, except the Data bus. Controlled by IO_Pads1,

the data bus on KDLX is bi-directional. It sends out data when writing to memory and

stays high impedance otherwise. High impedance allows other devices connected on the

data bus to drive the bus, but data will not be accepted by KDLX at this moment even if it

flows inbound. The dash line in sky blue inside IO_Pads1 is an internal connection. This

internal connection functions only when input signal Out_En_n is low.

Notice that most input and output pins of KDLX are the same as core1. The func-

tion of IO_Pads1 is to interface the external bi-directional data bus to input data and out-

put data buses on core1. To understand KDLX better, the core needs to be explored.

20

Clock_in
1

Addr_Int
16

Instr
24

PC
16

Resetn
1

Prog_Rd
1

core

Stalln
1

Rd
1

Wr
1

Data
16

IO_Pads_1

KDLX

Clock_in
1

Addr_Int
16

Instr
24

Output_Data
16

PC
16

core

Resetn
1

Prog_Rd
1

Stalln
1

Rd
1

Input_data
16

Wr
1

Output_En_n
1

Pads
16

IO_Pads

Out_Data
16 In_Data 2

core1

Clock_in

Instr

Resetn

Stalln

Input_data

Wr_int

Output_data

Data

Input_data

When Output_En_n=0

Addr_Int

Output_data

PC

Prog_Rd

Rd

Wr_int

Figure 8. Inside KDLX

Major functional blocks are all inside core and are shown in Figure 9. These

blocks are zero_test, pipeline, regfile, pc_control, rw_control, alu, word_reg_single,

word_mux3 and word_mux4.

21

Input_Data
16

Addr_Int
16

Instr
24

Output_Data
16

PC
16

core

Clock_in
1

Prog_Rd
1

Resetn
1

Rd
1

Stalln
1

Wr
1

zero_flag
1

wr_enable
2

Data_In
24

alu_op
5

PC_Sel
2

pipeline

A_Mux
2

Clock
1

B_Mux
2

Dest
4

Resetn
1

Immed
16

Scan_Data_In
1

RSone
4

RStwo
4

Scan_Enable
1

IAR_Enable
1

rd_enable
1

Stalln
1

scan_out
1

Reg_In_Sel
2

Wb_enable
1

In_word
16

zero_flag
1

zero_test

A
16

Out_word
16

B
16

word_mux3

C
16

Sel
2

A
16

Out_word
16

B
16

C
16

word_mux4

D
16

Sel
2

A
16

Out_word
16

B
16

word_mux3

C
16

Sel
2

alu_op
5

alu

B
16

A
16

alu_out
16

Clock
1

Prog_Rd
1

resetn
1

Rd
1

rw_control

stalln
1

rd_enable
1

wr_enable
1

Wr
1

ALU_Out
16

D_Link_PC
16

Scan_Data_In
1

PC
16

PC_Sel
2

D2_Inc_PC
16

Clock
1

IAR_Enable
1

in_pc
1

Resetn
1

pc_control

Scan_Enable
1

Stalln
1

Scan_Data_Out
1

Data_In
16

Data_out
16

Clock
1

Enable
1

word_reg_single

Resetn
1

Scan_Data_In
1

Scan_Enable
1

Data_In
16

Data_out
16

Clock
1

Enable
1

word_reg_single

Resetn
1

Scan_Data_In
1

Scan_Enable
1

Data_In
16

Data_out
16

Clock
1

Enable
1

word_reg_single

Resetn
1

Scan_Data_In
1

Scan_Enable
1

Data_In
16

Data_out
16

Clock
1

Enable
1

word_reg_single

Resetn
1

Scan_Data_In
1

Scan_Enable
1

word_mux3_1

word_mux3_2

word_reg_single_4

word_reg_single_3

Word_Reg_1

Word_Reg_2

word_mux4_1

Data_In
16

A
16

wb_enable
1

B
16

resetn
1

Dest
4

RSone
4

RStwo
4

clock
1

regfile

scan_data_in
1

scan_enable
1

stalln
1

pc_control_1

rw_control_1

pipeline_1

zero_test_1

alu_1

regfile_1

Clock

Clock

Clock

Clock

Clock

Clock

Clock

Clock

resetn

resetn

resetn

resetn

Resetn

Resetn

resetn

resetn

Stalln

stalln

Stalln

Stalln

Stalln

Stalln

Stalln

Stalln

Shift_En

Shift_En

Shift_En

Shift_En

Shift_En

Shift_En

Shift_En

Scan_Data_In

sign_ext_immed

A

A

A

zero_flag

zero_flag

alu_op

alu_op

rd_enable

rd_enable

wr_enable

wr_enable

Prog_Rd

Rd

output_en_n

regfile_in

Regfile_In

Dest

Dest

RSone

RSone

RStwo

RStwo

pipeline_scan_out

pipeline_scan_out

wb_enable

wb_enable

B

ALU_Out

ALU_Out

ALU_Out

PC_Sel

PC_Sel

IAR_Enable

IAR_Enable

D_ALU_Out(15)

D_ALU_Out

D_Link_PC

D_Link_PC

D2_Inc_PC

D2_Inc_PC

PC

pc_control_scan_out

pc_control_scan_out

Instr

A_Mux

A_Mux

B_Mux
B_Mux

Immed

Immed<7..0> -> B<7..0>
zero_byte -> B<15..8>

Immed<7..0> -> C<15..8>
Immed

zero_byte -> C <7..0>

Reg_In_Sel

Reg_In_Sel

B Data_Out

Data_Out(15)

Input_Data LD_Memory_In

LD_Memory_In

Buf_Addr_Int

Buf_Addr_Int

Buf_Addr_Int(15)

B(15)

ALU_B

ALU_B

B

ALU_A

ALU_A

D_ALU_Out

core

zero_byte=00000000
shift_en=0

Figure 9. Inside core

22

The local block name used in the file “core.vhd” is boxed at the top of each func-

tion block. Words in bright green are still local signals and those in sky blue represent

global signals only within the core. They are considered global signals because most

blocks have these signals and they all receive the same value. For instance, all blocks re-

ceive zero when signal resetn is low. When the global signals Shift_En is low, local

block pipeline_1 may invert this signal to high internally and use it to trigger other func-

tions. Therefore, Shift_En low in the core does not mean this signal is low inside pipe-

line_1. That is why global signals are used for the core only.

The detailed functioning of each block is described in KDLX’s VHDL code. Fig-

ures 8 and 9 are plotted directly from the original VHDL code to illustrate how these

components connect. Functions of important components like alu, regfile, pc_control,

rw_control and pipeline are briefed here. Simulation of KDLX later will verify these

functions.

1. Function of alu

This block is able to do addition, logic computation, and barrel shifting. Subtrac-

tion can be achieved by adding a positive number with a negative number. KDLX uses

2’s complement arithmetic to do calculation. A simple 8-bit 2’s complement number ta-

ble is shown in Table 4.

Binary number Equivalent Decimal number
1 1 1 1 1 1 1 1 127

.

.

.
.
.
.

0 0 0 0 0 0 1 1 3
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 -1
1 1 1 1 1 1 1 0 -2
1 1 1 1 1 1 0 1 -3
1 1 1 1 1 0 1 1 -4

.

.

.

.

.

.
1 0 0 0 0 0 0 0 -128

Table 4. 2’s Complement Numbers

23

 Logic computation includes logic AND, OR and XOR functions. KDLX allows a

user to do logic computation between contents of two registers or the contents of a regis-

ter and an immediate value.

A built-in barrel shifter gives KDLX the ability to do logic or arithmetic shifting.

2. Function of regfile

All 15 registers of KDLX are in this block. The inbound data bus is connected to

all registers and an enable bus is used to control which register is being written. Two big

muxes, MUXA and MUXB, route the output of a selected register to the outbound data

bus.

3. Function of pc_control

The program counter sends the address to the instruction memory in order to fetch

an instruction for next step. The pc_control assumes an important role while executing a

Branch, Jump or TRAP instruction. For some instructions like Jump and Link,

pc_control will save the return address of the instruction that comes after the next 2 in-

structions. This is because KDLX is pipelined, and, therefore, two instructions after the

Jump will be executed before the jump occurs. The return address is saved in register 15.

Since no instruction in KDLX is able to read the return address in register 15 directly,

another circuit needs to be constructed in order to jump back to where the Jump and Link

instruction left off.

Another important component in pc_control is the interrupt address register (IAR)

which has been mentioned in Johnson’s implementation. IAR is a register not accessible

for a user. This special register is merely used to save the return address of the TRAP in-

struction. When the TRAP instruction is executed, the return address (which is the ad-

dress right after the next 2 instructions) is saved into the IAR. After this, the program

counter jumps to another memory location and start reading another set of instructions.

Another instruction named Return From Exception (RFE) will be at the end of the in-

struction set. RFE will read the IAR and jump back to the memory location indicated.

The jump, branch and trap implementations will be discussed again while simulating

KDLX in this chapter.

24

4. Function of rw_control

Obviously this is where KDLX controls read, write and program read signals for

the memory modules that are attached to it. An important point here is that the KDLX

read and write signals are active low. This means these two signals are activated at the

falling edge of clock.

5. Function of pipeline

Inheriting the nature of DLX, the KDLX is a five-stage pipelined processor, i.e.,

Fetch, Decode, Execute, Memory and Write Back. At the Decode stage, signals used to

select registers in regfile are assigned. At the Execute stage, eight instructions are spe-

cific monitored. These eight instructions are Jump, Jump and Link, Branch if Equal

Zero, Branch if Not Equal Zero, RFE, TRAP, Jump Register and Jump Register and

Link. At the Memory stage, the signals are generated to allow the KDLX to read from or

write to memory. The last stage, Write Back stage, allows most of the instructions to

write to registers except some specific ones.

6. KDLX Summary

Thankfully, the ISE software has the ability to transfer VHDL code to a schematic

so the user has an option to study a circuit without understanding VHDL code. The

Schematic is more graphical than code and allows people to physically see how circuit is

wired. The schematic symbol of KDLX is shown in Figure 10.

Figure 10. Schematic Symbol of KDLX

dix
clockjn

reset n

stalln

instr(23:0)

prog_rd

rd

wr

addr_int(15:0)

pc(15:0)

data(15:0)

^ rli T

A T
rli ^

rli T

25

a. Inputs and Outputs

As mentioned earlier, KDLX has four inputs, five outputs and one bi–

direction bus. Four inputs are three 1-bit pins, i.e., clock_in, resetn and stalln, and one

24-bit instruction bus. Five outputs are three 1-bit pins, i.e., prog_rd, rd and wr, and two

16-bit buses, i.e., addr_int(15:0) and pc(15:0). The only bi-directional bus is a 16-bit

data bus. Functions of these pins are listed in Table 5.

Symbol Signal Name Function
clock_in Clock input

resetn Reset Reset KDLX when low. All register contents are
cleared.

stalln Stall Stall KDLX when low. Stall everything including
data in pipeline stage.

instr(23:0) Instruction Bus Receive instructions sent from instruction memory.
prog_rd Program Read
rd Read Read data from data memory when low.
wr Write Write data to data memory when low.
addr_int(15:0) Data Address Send data address to data memory.
pc(15:0) Program Counter Send instruction address to instruction memory.

data(15:0) Data Bus Receive data from data memory or send data out to
data memory.

Table 5. Function of Pins on KDLX

b. Harvard Architecture and Von Neumann Architecture

KDLX is a Harvard architecture device that has a pair of address and data

buses for instruction memory and another pair for data memory. Figure 11 illustrates the

concept of this architecture. The device at the center sends the address of instruction to

an instruction memory. Then the instruction memory on the left will send an instruction

back to the device. If the instruction received is to read or write data to data memory, the

device at the center will send a data address to the data memory at the right side to indi-

cated the memory location it wants to read or write. If the device wants to read, the data

bus will be driven by data memory and data is sent from data memory to the device. If

the device wants to write, the data bus will be driven by the device and data is sent from

the device to data memory.

26

Harvard
Architecture

Device

Instruction
Memory

Data
Memory

instruction address

instruction

data address

data

Figure 11. Harvard Architecture

By applying the same concept to KDLX, a picture like Figure 12 is under-

standable.

KDLXInstruction
Memory

Data
Memory

pc(15:0)

instr(23:0)

addr_int(15:0)

data(15:0)

Figure 12. KDLX Connections with Two Memories

The Von Neumann architecture, on the other hand, has only one address

bus and one data bus. A single memory is used in this architecture. A processor using

Von Neumann architecture has less timing issues that need to be solved with memory

since they are the same architecture. A Harvard-architecture processor, e.g., KDLX,

needs to deal with possible timing mismatches with memory if only one memory is avail-

able. In the CFTP design, only one memory is available for the TMR circuit thus it is an

instruction memory and a data memory as well. Recall that a component in Johnson’s

implementation (called Reconciler) is such a device used to integrate these two different

architectures.

In order to consolidate a four-bus processor with a two-bus memory, the

memory has to run in double speed to support two accesses per clock cycle. Figure 13

shows how KDLX communicates with only one memory.

KDLX

Instruction
&

Data
Memory

pc(15:0)

addr_int(15:0)

data(15:0)

instr(23:0)

Figure 13. KDLX with One Memory

27

Since KDLX is a pipelined processor, it needs to be able to read or write

data at the time it fetches an instruction. Both of these events can happen in one KDLX

clock cycle. If the memory is twice as fast as the KDLX, it is able to deal with instruc-

tion at the first memory clock cycle and deal with data at the second memory clock cycle.

In Figure 13, pc(15:0) and instr(23:0) are done in the first memory clock cycle;

addr_int(15:0) and data(15:0) are done in the second memory clock cycle. The memory

used here needs to be a 24-bit memory due to the width of instruction bus. Because the

KDLX data bus is only 16-bits wide, only the lower 16-bit data will be accepted and the

rest are buffered out.

B. PIPELINE CONCEPTS

The KDLX is a five-stage pipelined processor. These five stages are Fetch, De-

code, Execute, Memory (Mem) and Write Back (WB). When doing a write, data is writ-

ten to a register at the third clock cycle, i.e., the Execute stage. Therefore, a destination

register used in one instruction is not available until 2 clock cycles later. This concept

has significant impacts when creating a test bench. Figure 14 shows the pipeline execu-

tion of KDLX in normal operation.

 Clock cycle Instruction

number 1 2 3 4 5 6 7 8 9
Instruction 1 Fetch Decode Execute Mem WB
Instruction 2 Fetch Decode Execute Mem WB
Instruction 3 Fetch Decode Execute Mem WB
Instruction 4 Fetch Decode Execute Mem WB
Instruction 5 Fetch Decode Execute Mem WB

Figure 14. Pipeline Execution in KDLX

In Figure 14, if Instruction 1 is loading data from the memory to register 3 (for

example), the action to load register 3 starts at clock 3 and ends at clock 5 which means

register 3 should not be accessed as a source register in Instruction 2, 3 and 4. Failing to

do so, Instruction 2, 3 and 4 will either fetch a wrong value or unidentified data. Thus a

new value of register 3 is only available for an instruction equivalent to or later than In-

struction 5.

28

C. MEMORY IN SIMULATION

All components generated for TMR design were simulated with KDLX and mem-

ory as the final step. The ISE software has several different kinds of RAM or ROM in

schematics for users to choose. A designer can also construct a memory via VHDL code.

Another function called the CORE generator (Coregen) is a graphical interactive design

tool in ISE software to help a user design a module. Due to its simplicity, memory used

in this thesis was generated from Coregen.

A 24-bit memory with its simulation result is shown in Appendix A, section A. In

order to explain, a copy of this simulation was made and labeled as Figure 15.

Figure 15. 24-bit Memory Simulation Result

Values on the address bus and input data bus are assigned in the test bench. In

this simulation, memory is being written at point 1. The first value (i.e., 00004716) is

written into memory location 0016 and the second value (i.e., 00004C16) is written into

memory location 0116 and so on. At point 2, memory starts being read and all values are

output as originally initiated. One of the features of this memory is that data sent to

data_in bus for writing comes out at the data_out bus. A designer can monitor the data

written into memory from here. The write enable signal of this memory is active low;

therefore it reads when this signal is high.

Memory used in simulation can be a RAM or ROM. A ROM is used as an in-

struction memory which is not allowed to be written. A RAM can be initialized by writ-

29

ing it before using it, but a ROM cannot since it does not have a write enable pin. Thus, a

ROM needs to be pre-configured. In the ISE software, a user needs to generate a coe file

and load it before a memory is generated in Coregen.

Memory offered in ISE software is not a real Von Neumann architecture since it

has separate buses for data input and output. For simplicity, the TMR design in this the-

sis uses this kind of memory. Further modification is needed when a real Von Neumann

architecture memory is available.

D. KDLX SIMULATION WITHOUT MEMORY

Operation codes (Opcodes) for the instruction set are described in Appendix B.

This appendix includes all instructions that can be implemented in KDLX. Simulation of

all instructions is one of the best ways to understand how KDLX functions. Before doing

that, a simple simulation on KDLX itself is shown in Appendix A, section B. Figure 16

is a copy of this simulation result for explanation. All registers in the KDLX are initial-

ized to the value 000016 and register 0 is always zero.

Figure 16. KDLX Simulation

In Figure 16, the first instruction at point 1 represents loading the value at mem-

ory location [(register 0)+05] into register 3. One can find a read signal becomes low at

point 2. Comparing the timing here with Figure 14, it is proved that the action on the reg-

ister occurs at Execute clock cycle. Since two values, 001416 and 001516, are already

available on the bus, KDLX loads these two data into register 3 and register 5, respec-

30

tively. Recall that the pipeline features discussed in Figure 14, the new content of regis-

ter 5 is not available at any clock cycle before point 3. Using register 5 anywhere before

point 3 will use the old value in register 5 which is 000016 in this case. In this simulation,

three NOP are inserted before using register 5.

At point 3, instruction 45050716 stands for storing the content of register 5 to the

memory location [(register 0)+07]. Again, the action starts at point 4 which is the Exe-

cute cycle for this instruction and the value loaded before shows up on the data bus.

Since the data bus is high impedance at this clock cycle, the KDLX is able to drive the

bus and output data. Without a high impedance, the KDLX is not able to use the bus be-

cause it assumes someone is using it. By checking the address bus of the KDLX simula-

tion, one can find how the instruction and address correspond with each other.

The two instructions following the store instructions are 41340816 and 41560116.

These add immediate values to register 3 and 5, respectively, thus the data inside register

3 and 5 changes. This can be seen at point 5 when these two register contents are stored

again.

For the rest of this thesis, we will use assembly language mnemonics to refer to

instructions. For example, a register is represented by R. Thus, R0 stands for register 0

and R1 means register 1. Instead of a long explanation of each instruction, the operation

symbol will also be used in following contents. An instruction like 44030516 will be rep-

resented as LW R3←Mem(R0+05). The symbols and expressions are defined in Appen-

dix B.

E. KDLX SIMULATION WITH MEMORY

There are a total of 42 instructions for KDLX. Understanding these instructions is

necessary to generate a test bench for the TMR processor. Utilizing different combina-

tions of instructions can also help a designer use a short test bench to achieve the same

goal of simulation. Instead of loading a large number of instructions into instruction

memory before testing, pre-configured memory is used. Simply by selecting a different

memory file, the same test bench can be used to test different instruction set; otherwise,

several test benches are needed for different instruction set.

31

Instead of testing all instructions in one huge test bench, the 42 instructions were

separated into four different instruction sets. Instruction set 1 and 2 test arithmetic and

logic functions. Instruction set 3 and 4 test Jump, Branch and TRAP functions.

The schematic designed for this testing is shown in Figure 17. Memory at left

side is a ROM used as instruction memory. The other one at right side is data memory

which is a RAM. The addr_box contains only buffers used to truncate the width of the

address bus since the memory address for this design is only 8-bits wide. Data memory

is pre-configured with 000316 since some numbers need to be loaded into registers at the

beginning of simulation.

32

Figure 17. KLXD with Instruction and Data Memory

a *
i 'i

1
X o

■a

n

I CD

LLJ

^^

rx>

(Dl

LJJ

m

a m

P, "E !
Ml

I i

33

The write signal on KDLX is connected directly to data memory in order to be

able to write memory. Since KDLX uses a bi-directional data bus, buffers with enable

pin are needed to control the direction of data flow. Read and write signals are used to

enable or disable these buffers. Extra output buses are added for monitor purposes. All

test benches and simulation results are in Appendix A, section C.

1. Implementation Table of Instruction Set 1

An implementation table is generated as Table 6. Constructing such an instruc-

tion test bench can take a lot of time since instructions need to be rearranged and simula-

tion results need to be checked. Instructions tested in each set are not many, but a num-

ber of loading and storing instructions are needed to check the data. All numbers in Ta-

ble 6 are hexadecimal and R0 is always zero.

Instruction (operation symbol) Opcode Value through Data Bus
LW R1←Mem(R0+03) 440103
SW R1→Mem(R0+08) 450108 0003
LW R2←Mem(R0+04) 440204
SW R2→Mem(R0+09) 450209 0003
ADD R1+R2→R3 011320
SW R3→Mem(R0+0D) 45030D 0006
ADDI R1+ext(F9)→R4 4114F9
SW R4→Mem(R0+0E) 45040E FFFC
ADDUI R1+(0A) →R5 21150A
SW R5→Mem(R0+0F) 45050F 000D
AND R1•R3→R6 091630
SW R6→Mem(R0+10) 450610 0002
ANDI R4•(FD)→R7 2947FD
SW R7→Mem(R0+11) 450711 00FC
LHI R8←FF||(0)8 0808FF
SW R8→Mem(R0+12) 450812 FF00
OR R1+R3→R9 0A1930
SW R9→Mem(R0+13) 450913 0007
ORI R1+(F0)→R10 2A1AF0
SW R10→Mem(R0+14) 450A14 00F3
SEQ R1=R2→R11=1 181B20
SW R11→Mem(R0+15) 450B15 0001
SEQ R1≠R3→R12=0 181C30
SW R12→Mem(R0+16) 450C16 0000
SEQI R1=(0003)→R13=1 581D03
SW R13→Mem(R0+17) 450D17 0001
SEQI R1≠(0004)→R14=0 581E04

34

Instruction (operation symbol) Opcode Value through Data Bus
SW R14→Mem(R0+18) 450E18 0000
SLL R4←R2=(0003)→R15 114F20
SW R15→Mem(R0+19) 450F19 FFE0
SLLI R4←(0005)→R3 514305
SW R3→Mem(R0+1A) 45031A FF80
SRA R4→R1=(0003)→R5 134510
SW R5→Mem(R0+1B) 45051B FFFF
SRLI R4→(0003)→R6 524603
SW R6→Mem(R0+1C) 45061C 1FFF
SUBI R8−ext(7B)→R7 43877B
SW R7→Mem(R0+1D) 45071D FE85
XOR R9⊕R10→R11 0B9BA0
SW R11→Mem(R0+1E) 450B1E 00F4

Table 6. Instruction Set 1

There are four sections in this map. Instructions for loading or computing data

are implemented first in each section. Instructions for storing are used for checking data

and are implemented later. The third column lists all Opcodes for implementing and the

fourth column shows all data that should come out on the data bus.

2. Simulation Result of Instruction Set 1

To see the difference with the simulation of KDLX only, part of the simulation

results is shown in Figure 18.

Figure 18. Simulation of KDLX with Memory

35

In order to make sure that the memory is stable before KDLX is going to use it,

the memory clock cycle is doubled. The instruction memory will be ready before KDLX

reads the instruction. The data memory will write data in a very short time and always be

ready to be read by the KDLX.

Comparing timing before and after KDLX connects with the memory, a delay of

the read and write operation can be found. In Figure 18, the instruction at point 1 does

not start the write until point 2. Without the memory, this signal should be about one-half

clock cycle earlier than point 2. This difference is due to the timing delays from the

connecting memory. The fourth cycle of the KDLX clock is Mem which means that the

KDLX is accessing memory at this time.

Another delay shows on instruction fetching. (Recall the schematic in Figure 17.)

The program counter of KDLX sends out an instruction address to the instruction mem-

ory. Then the instruction memory reads the program counter and sends out an instruction

to KDLX. This delay makes each instruction in Figure 18 start at the falling edge of

clock. This is not like the instruction in Figure 16 which starts at the rising edge. The

same delay happens when KDLX reads from or writes to the data memory.

The pipeline feature can also be seen in Figure 18. While KDLX is still sending

out data, it is simultaneously fetching a new instruction.

An alternative way to check the simulation result is to construct tables for memo-

ries and registers as shown in Table 7. The instruction memory is pre-configured as the

first table at the left. The second table shows how the contents of registers change in the

simulation. The third table at the right expresses values in different locations after the

simulation is done. Blank areas in data memory will contain the default value 000316.

In the instruction memory, a series of store instructions is used to check the con-

tents in registers. A series of load instructions is used to check the contents in the mem-

ory locations. The first six Opcodes implement the instructions in section 1 of Table 6.

Then the Opcodes from memory locations 08 to 10 execute the instructions in section 2

of Table 6. All instructions for loading and computation are executed before storing to

memory. The instruction sequence in Table 6 is used to track which part of the instruc-

tions are checked when storing.

36

Instruction Mem
0000

01 440103
02 440204
03 000000
04 000000
05 450108
06 450209
07 000000
08 011320
09 4114F9
0A 21150A
0B 000000
0C 091630
0D 45030D
0E 45040E
0F 45050F
10 450610
11 2947FD
12 0808FF
13 0A1930
14 2A1AF0
15 450711
16 450812
17 450913
18 450A14
19 181B20
1A 181C30
1B 581D03
1C 581E04
1D 450B15
1E 450C16
1F 450D17
20 450E18
21 114F20
22 514305
23 134510
24 524603
25 450F19
26 45031A
27 45051B

01 0003
02 0003
03 0006
04 FFFC
05 000D
06 0002
07 00FC
08 FF00
09 0007
10 00F3
11 0001
12 0000
13 0001
14 0000
15 FFE0

28 45061C
29 43877B
2A 0B9BA0

Data Mem
00
01
02
03
04
05
06
07
08 0003
09 0003
0A
0B
0C
0D 0006
0E FFFC
0F 000D
10 0002
11 00FC
12 FF00
13 0007
14 00F3
15 0001
16 0000
17 0001
18 0000
19 FFE0
1A FF80
1B FFFF
1C 1FFFF
1D FE85
1E 00F4
1F
20
21
22
23
24
25
26
27
28
29
2A

Register

FF80

FFFF
1FFF
FE85

00F4

2C 000000

2D 45071D
2E 450B1E
2F 000000
30 000000
31 000000
32 450101
33 450201
34 450301
35 450401
36 450501
37 450601
38 450701
39 450801
3A 450901
3B 450A01
3C 450B01
3D 450C01
3E 450D01
3F 450E01
40 450F01
41 000000
42 000000
43 000000
44 44010D
45 44020E
46 44030F
47 440410
48 440511
49 440612
4A 440713
4B 440814
4C 440915
4D 440A16
4E 440B17
4F 440C18
50 440D19
51 440E1A
52 440F1B
53 44011C
54 44021D
55 44031E
56 000000

2B 000000
57 000000

59 000000
58 000000

Table 7. Tables of Registers and Memories in Simulation 1

37

The Opcode, 4114F916, at memory location 0916 implements ADDI

R1+ext(F9)→R4. The original value of R1 is 000316 which equals to 310. Since KDLX

uses 2’s complement numbers, the sign extension value of F916 is FFF916 which is (–7) in

decimal. The sum of 310 and (–7)10 is (–4)10. Convert (–4)10 to a binary number and do

2’s complement, the result in hexadecimal is FFFC16. This agrees with the value in data

memory location 0E16.

3. Implementation Table of Instruction Set 2

The rest of the instructions (not including Jump and Branch) are listed in Table 8.

This table only shows the instructions that were tested in this thesis. The table does not

include the instructions for configuring memory contents. This will be explained further

in the simulation section of this chapter.

Instruction (operation symbol) Opcode Expected Value
SGE R1>R3→R13=1 191D30
SW R13→Mem(R0+1F) 450D1F 0001
SGE R15>R14→R9=0 19F9E0
SW R9→Mem(R0+20) 450920 0000
SGEI R15≥ext(E8)→R10=0 59FAE8
SW R10→Mem(R0+21) 450A21 0000
SGEI R15≥ext(E0) →R11=1 59FBE0
SW R11→Mem(R0+22) 450B22 0001
SGT R4>R15→R6=1 1A46F0
SW R6→Mem(R0+23) 450623 0001
SGT R15>R4→R7=0 1AF740
SW R7→Mem(R0+24) 450724 0000
SGTI R15>ext(FF)→R8=0 5AF8FF
SW R8→Mem(R0+25) 450825 0000
SGTI R15>ext(87)→R9=1 5AF987
SW R9→Mem(R0+26) 450926 0001
SLE R1=R2→R10=1 1B1A20
SW R10→Mem(R0+27) 450A27 0001
SLE R1<R13→R11=0 1B1BD0
SW R11→Mem(R0+28) 450B28 0000
SLEI R1≤ext(03)→R12=1 5B1C03
SW R12→Mem(R0+29) 450C29 0001
SLEI R1≤ext(02)→R13=0 5B1D02
SW R13→Mem(R0+2A) 450D2A 0000
SLT R15<R1→R6=1 1CF610
SW R6→Mem(R0+01) 450601 0001
SLT R1<R15→R7=0 1C16F0

38

Instruction (operation symbol) Opcode Expected Value
SW R7→Mem(R0+02) 450702 0000
SLTI R1<ext(0D)→R8=1 5C180D
SW R8→Mem(R0+03) 450803 0001
SLTI R1<ext(01)→R9=0 5C1901
SW R9→Mem(R0+04) 450904 0000
SNE R1≠R2→R10=0 1D1A20
SW R10→Mem(R0+05) 450A05 0000
SNE R1≠R15→R11=1 1D1BF0
SW R11→Mem(R0+06) 450B06 0001
SNEI R1≠ext(03)→R12=1 581C03
SW R12→Mem(R0+07) 450C07 0001
SNEI R15≠ext(E1)→R13=0 58FDE1
SW R13→Mem(R0+08) 450D08 0000
SRAI R3→(0006)→R6 533606
SW R6→Mem(R0+09) 450609 FFFE
SRL R3→R2=(0003)→R7 123720
SW R7→Mem(R0+0A) 45070A 1FF0
XORI R15⊕(8A)→R8 2BF88A
SW R8→Mem(R0+0B) 45080B FF6A
SUBUI R3−(80)→R9 233980
SW R9→Mem(R0+0C) 45090C FF00
SUB R1−R3→R14 031E30
SW R14→Mem(R0+0D) 450E0D 0083

Table 8. Instruction Set 2

4. Simulation Result of Instruction Set 2

The complete table set that shows all values inside memories and registers for this

simulation is shown in Table 9. In the instruction memory part of the table, the instruc-

tions shown in Table 8 actually start at memory location 2A16. Instructions before this

point are used to generate the same register values used in instruction set 1. The first col-

umn of Table 9 shows values that are identical to the final results in Table 7.

The registers change many times during this simulation, but the table only shows

the initial and final values. The first column as described in the last paragraph is the

starting data for instruction set 2. The second column lists all final values in registers.

 This simulation uses different data memory locations than instruction set 1. This

provides a boundary test for memory while testing KDLX.

39

This instruction set demonstrates most of the possible comparisons between regis-

ters or of a register with an immediate value. Since the KDLX uses 2’s complement val-

ues, 000316 is obviously greater than FF8016. Logical operations like ANDI, ORI, and

XORI do not use sign extension on an immediate value.

40

Instruction Mem
00
01 410103
02 410203
03 0803FF
04 0804FF
05 0805FF
06 08061F
07 410380
08 4104FC
09 4105FF
0A 2166FF
0B 0807FE
0C 0808FF
0D 080FFF
0E 210AF3
0F 217785
10 210BF4
11 410907
12 410D01
13 410E00
14 410C00
15 410FE0
16 000000
17 000000
18 450100
19 450200
1A 450300
1B 450400
1C 450500
1D 450600
1E 450700
1F 450800
20 450900
21 450A00
22 450B00
23 450C00
24 450D00
25 450E00
26 450F00
27 000000
28 000000
29 000000
2A 191D30

Data Mem
00
01 0001
02 0000
03 0001
04 0000
05 0000
06 0001
07 0001
08 0000
09 FFFE
0A 1FF0
0B FF6A
0C FF00
0D 0083
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F 0001
20 0000
21 0000
22 0001
23 0001
24 0000
25 0000
26 0001
27 0001
28 0000
29 0001
2A 0000

2C 59FAE8

30 450A21
31 450B22
32 1A46F0
33 1AF740
34 5AF8FF
35 5AF987
36 450623
37 450724
38 450825
39 450926
3A 1B1A20
3B 1B1BD0
3C 5B1C03
3D 5B1D02
3E 450A27
3F 450B28
40 450C29
41 450D2A
42 1CF610
43 1C17F0
44 5C180D
45 5C1901
46 450601
47 450702
48 450803
49 450904
4A 1D1A20
4B 1D1BF0
4C 581C03
4D 58FDE1
4E 450A05
4F 450B06
50 450C07
51 450D08
52 533603
53 123720
54 2BF88A
55 233980
56 031E30

2B 19F9E0

57 450609

59 45080B
58 45070A

5A 45090C
5B 450E0D
5C 000000
5D 000000
5E 000000

2D 59FBE0
2E 450D1F
2F 450920 5F 000000

00
01 0003
02 0003
03 FF80
04 FFFC
05 FFFF
06 1FFF
07 FE85
08 FF00
09 0007
10 00F3
11 00F4
12 0000
13 0001
14 0000
15 FFE0

Register

0003
0003
FF80
FFFC
FFFF
FFFE
1FF0
FF6A
FF00
0000
0001
0001
0000
0083
FFE0

Table 9. Tables of Registers and Memories in Simulation 2

41

5. Implementation Table of Instruction Set 3

This instruction set starts by testing the Jump and Branch instructions. The com-

plete implementation is listed in Table 10. There are no divisions in this table and the se-

quence of execution is from top to bottom. If an instruction jumps to the wrong memory

location, one or all contents of the target registers will not agree with the expected value

shown here.

Instruction (operation symbol) Opcode Expected Value
LW R1←Mem(R0+03) 410103
LW R2←Mem(R0+04) 410204
LW R3←Mem(R0+00) 410300
LW R4←Mem(R0+06) 410406
BNEZ R1≠0→Prog_Addr←(05)+1+ext(04) C01004
 Note: PC=05 and (05)+1+ext(04)=0A
BEQZ R3=0→Prog_Addr←(0A)+1+ext(04) C13004
 Note: PC=0A and (0A)+1+ext(04)=0F
ADDI R0+ext(25)→R5 410525
J (0020)→Prog_Addr C80020
JAL (0014)→Prog_Addr ; (23)→R15 E80014
 Note:(23) is return address
ADDI R0+ext(8A)→R6 41068A
ADDI R0+ext(40)→R7 410740
ADD R1+R2→R8 011820
ADD R1+R4→R9 011940
SW R15→Mem(R0+01) 450F01 0023
JALR R5→Prog_Addr ; (1D)→R15 685000
 Noter:(1D) is return address
J (0030)→Prog_Addr C80030
SW R5→Mem(R0+02) 450502 0025
SW R6→Mem(R0+03) 450603 FF8A
SW R7→Mem(R0+04) 450704 0040
SW R8→Mem(R0+05) 450805 0007
SW R9→Mem(R0+06) 450906 0009
SW R15→Mem(R0+07) 450F07 001D
JR R7→Prog_Addr 487000
SW R2→Mem(R0+08) 450208 0004

Table 10. Instruction Set 3

42

6. Simulation Result of Instruction Set 3

For Jump and Branch instructions, the sequence of instructions in memory is not

the sequence of implementation. This can be easily understood by looking at Table 11.

The black arrows represent the normal sequence of operation. The blue dash lines

stand for Jump or Branch instructions without link, and the blue solid lines stand for

Jump and Link or Branch and Link.

The first branch occurs at memory location 0516. Since the program counter at

that point is 0516, it branches to memory location 0A16 with a given immediate value 0416.

The action of branching occurs two clocks later due to pipelining, so the instructions at

memory location 0616 and 0716 are fetched before the sequence branches to the new ad-

dress.

At memory location 0A16, another branch instruction is executed. It branches to

another memory location, 0F16. Because the Opcode 41052516 is fetched before the

branch occurs, an immediate value is added into R5. This can be checked in the register

table or in data memory location 0216 where Opcode 45050216 loads data to.

Opcode E8001416 is a Jump and Link instruction. It jumps to address 1416 and

save address 2316 into R15. There is no doubt that address 2316 is where the jump occurs,

not address 2016, 2116 or 2216. In each case, the two instructions following Jump and Link

are fetched before the jump instruction is executed.

The instruction at memory location 1A16 is Jump Register and Link. This allows

KDLX to read the address it wishes to jump to directly from its internal register. Sup-

pose one register is reserved for a special purpose and it contains a special memory loca-

tion. Then KDLX can always jump to that specific memory location by simply reading

the contents of that register without any extra instructions needing to be implemented.

43

R e g is te rIn s t ru c t io n M e m
0 00 0

0 1 4 1 0 1 0 3
0 2 4 1 0 2 0 4
0 3 4 1 0 3 0 0
0 4 4 1 0 4 0 6
0 5 C 0 1 0 0 4
0 6 0 0 0 0 0 0
0 7 0 0 0 0 0 0
0 8
0 9
0 A C 1 3 0 0 4
0 B 4 1 0 5 2 5
0 C 0 0 0 0 0 0
0 D
0 E
0 F C 8 0 0 2 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 2
1 3
1 4 0 1 1 8 2 0
1 5 0 1 1 9 4 0
1 6 4 5 0 F 0 1
1 7 0 0 0 0 0 0
1 8 0 0 0 0 0 0
1 9 0 0 0 0 0 0
1 A 6 8 5 0 0 0
1 B 0 0 0 0 0 0
1 C 0 0 0 0 0 0
1 D
1 E
1 F
2 0 E 8 0 0 1 4
2 1 4 1 0 6 8 A
2 2 4 1 0 7 4 0
2 3
2 4
2 5 C 8 0 0 3 0
2 6 0 0 0 0 0 0
2 7 0 0 0 0 0 0

0 1 0 0 0 3
0 2 0 0 0 4
0 3 0 0 0 0
0 4 0 0 0 6
0 5 0 0 2 5
0 6 F F 8 A
0 7 0 0 4 0
0 8 0 0 0 7
0 9 0 0 0 9
1 0
1 1
1 2
1 3
1 4
1 5

2 8
2 9
2 A

D a ta M e m
0 0
0 1 0 0 2 3
0 2 0 0 2 5
0 3 F F 8 A
0 4 0 0 4 0
0 5 0 0 0 7
0 6 0 0 0 9
0 7 0 0 1 D
0 8 0 0 0 4
0 9
0 A
0 B
0 C
0 D
0 E
0 F
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 A
1 B
1 C
1 D
1 E
1 F
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 A

3 0 4 5 0 5 0 2
3 1 4 5 0 6 0 3
3 2 4 5 0 7 0 4
3 3 4 5 0 8 0 5
3 4 4 5 0 9 0 6
3 5 4 5 0 F 0 7
3 6 4 8 7 0 0 0
3 7 0 0 0 0 0 0
3 8 0 0 0 0 0 0
3 9

4 0 4 5 0 2 0 8

…
.

4 1 0 0 0 0 0 0
4 2 0 0 0 0 0 0
4 3 0 0 0 0 0 0

2 3 R 1 5
1 D R 1 5

Table 11. Tables of Registers and Memories in Simulation 3

44

7. Implementation Table of Instruction Set 4

This instruction set contains one of the most complicated instructions in the TMR

design, which is the TRAP instruction. The TRAP instruction acts as Jump and Link or

Branch and Link. The difference is that it saves its return address into the IAR, not into

R15. The IAR is a specific register mentioned earlier when introducing the pc_control

inside KDLX. Storing the return address into the IAR not only saves a register but also

guarantees the integrity since it is only accessible for the TRAP instruction.

Another feature of the TRAP instruction is that it owns an instruction called Re-

turn from Exception (RFE). The RFE, Opcode F8000016, only reads the content of IAR

and jumps to that address. Since the IAR always contains the return address of the TRAP

instruction, the RFE instruction only works with the TRAP instruction.

Instruction set 4 for testing the TRAP instruction is shown in Table 12.

Instruction (operation symbol) Opcode Expected Value
ADDI R0+ext(04)→R1 410104
ADDI R0+ext(07)→R2 410207
TRAP (0020)→Prog_Addr ; (06)→IAR 280020
 Note: (06) is return address
ADDI R0+ext(09)→R3 410309
ADDI R0+ext(15)→R4 410415
ADDI R0+ext(0A)→R7 41070A
ADDI R0+ext(11)→R8 410811
ADDI R0+ext(C2)→R10 410AC2
RFE (06)→Prog_Addr F80000
 Note: (06) is IAR
J (0011)→Prog_Addr C80011
SW R1→Mem(R0+01) 450101 0004
SW R2→Mem(R0+02) 450202 0007
SW R3→Mem(R0+03) 450303 0009
SW R4→Mem(R0+04) 450404 0015
SW R7→Mem(R0+07) 450707 000A
SW R8→Mem(R0+08) 450808 0011
SW R10→Mem(R0+0A) 450A0A FFC2

Table 12. Instruction Set 4

45

8. Simulation Result of Instruction Set 4

The features of the TRAP instruction are shown in Table 13. When fetching the

TRAP instruction at memory location 0316, KDLX stores the return address 0616 to the

IAR. Two clock cycles later in the TRAP, the program counter changes to 2016 and reads

the instruction at that address. After implementing a few instructions, the KDLX sees the

Opcode F8000016 and retrieves address 0616 for the return. The content at location 06 is a

Jump instruction. Therefore, the KDLX jumps again to memory location 1116.

Some important features can be found in this implementation. First, the TRAP

occurs exactly after 2 clock cycles; otherwise the Opcode C8001116 will be fetched. Sec-

ond, the IAR is not directly addressable, so using Opcode F8000016 is the only way to

verify the content of the IAR. Third, instruction set 4 can be an infinite loop if the test

bench never stops. After jumping to memory location 1116, the program counter keeps

counting in order to read instructions. If no other signal stops the KDLX, it will read Op-

code F8000016 again. This retrieves the IAR and jumps back to memory location 0616.

The Opcode C8001116 will lead KDLX to jumping to address 1116 then to keep on read-

ing instructions until it hits F8000016 again. This loop can be observed in the full simula-

tion result for instruction set 4 in Appendix A, section C.

46

RegisterInstruction Mem
0000

01 410104
02 410207
03 280020
04 410309
05 410415
06 C80011
07 000000
08 000000
09
0A
0B
0C
0D
0E
0F
10
11 450101
12 450202
13 450303
14 450404
15 450707
16 450808
17 450A0A
18 000000
19 000000
1A 000000
1B
1C
1D
1E
1F
20 41070A
21 410811
22 410AC2
23 000000
24 000000
25 000000
26 F80000
27 000000

01 0004
02 0007
03 0009
04 0015
05
06
07 000A
08 0011
09
10 FFC2
11
12
13
14
15

28 000000
29
2A

Data Mem
00
01 0004
02 0007
03 0009
04 0015
05
06
07 000A
08 0011
09
0A FFC2
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A

06 IAR

Table 13. Tables of Registers and Memories in Simulation 4

47

F. CHAPTER SUMMARY

This chapter introduced several important components inside KDLX and dis-

cussed pipeline concepts. Drawing a schematic from VHDL code is a good way to un-

derstand KDLX.

The simulation of KDLX with and without memory illustrated the concept of the

pipeline and developed ideas on how to organize a test bench. Most of the tables neces-

sary for simulation purposes were generated in this chapter. Having the tables generated

before constructing a test bench helps a designer to understand what the goal is and how

to achieve it. Tables created by the simulation gives a designer a big picture on how

things interact with each other. Sometimes things are hard to say but easy to see.

The TMR Assembly is designed in the next chapter. The function of the voter

and how it corrects an error will be explained. Then we will combine three KDLX proc-

essors with voters to form a TMR Assembly. Important simulation concepts will be re-

viewed as well.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

V. TMR ASSEMBLY

The TMR Assembly is composed of three KDLX processors with voters on all

outputs. All of the KDLX instructions have been tested in the simulation described in the

previous chapter and the fundamental concept of KDLX has been established. The next

step is to realize the function of a voter.

A voter is constructed by some simple logic gates and is able to find an error

when inputs are not consistent. Since the CFTP will be operating in a relatively benign

LEO orbit, the TMR design does not have to deal with too many errors per unit time.

The assumption of the TMR design is that we will not see identical errors on two proces-

sors at the same time. The voters pass the majority vote so, if the errors are identical,

they will not be detected (and will, in fact, be turned into truth.)

A. 1-BIT VOTER

The CFTP is designed to be fault tolerant by software. Its circuit needs to be able

to detect an error and correct the error by itself. In order to achieve that, the concept of a

voter is generated.

The function of a 1-bit voter has been introduced in Lashomb’s thesis [1]. This

section reviews the basic concepts and then starts constructing the TMR Assembly. Fig-

ure 19 shows what a 1-bit voter looks like. It is a simple circuit consisting of only AND

and OR gates.

Figure 19. 1-Bit Majority Voter (After Ref. [1].)

^

[B>-

^

AND2

AND2

AND2

-m
0R3

50

The voter function is more obvious in the truth table shown in Table 14. This

voter always selects the majority of identical bits as its output bit. If two or more inputs

are incorrect, the voter output will also be incorrect. The ability to detect and correct two

or more errors in a voter is not vital for a system (e.g., the CFTP) in LEO orbit.

A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 14. Truth Table of A 1-Bit Voter (From Ref. [1].)

Assuming a single error, the output is always correct, but we cannot tell if there

has been an error just by looking at this output. Therefore, some extra gates are added to

report the occurrence of an error. Figure 20 shows a voter with error detection and Table

15 is its truth table.

Figure 20. Voter with Error Detection (After Ref. [1].)

-Q>
AND2

0R3

AND2

N0R2

N0R3

51

A B C Y ERR
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 1
1 0 0 0 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 0

Table 15. Truth Table of Voter with Error Detection (From Ref. [1].)

The error detection, ERR, is 1 when one of the inputs is not identical with the rest.

When the CFTP is in space, it is possible to have an SEU on the voter itself. A bit flip

may cause the voter output to be incorrect. Say the second column of Table 15 has a bit

flipping on A. This flipping makes 1 become the majority bit and output Y will give a 1

not a 0. Since a voter is used to catch and correct an error, it is not pleasant if it has an

error itself. Thus, some reliability is needed for the voter. A voter with added reliability

is shown in Figure 21.

Figure 21. Voter with Added Reliability (After Ref. [1].)

This version is built by duplicating the original part of the voter and XORing the

two parts to generate a voter error detection, V_ERR. If the voter errors, the outputs of

EB>-

E>-

H3>

52

the two OR3 in Figure 21 will not agree with each other, and V_ERR becomes 1. Table

16 is the truth table of this circuit.

 A B C Y V_ERR
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

Table 16. Truth Table of Voter with Added reliability (From Ref. [1].)

The last step is to collect all of these pieces to construct a complete single-bit

voter. As introduced earlier, a voter with error detection is able to correct the error and

tell the user an error has occurred. For the TMR design, knowing the existence of an er-

ror is not good enough since the error also has to be corrected. In order to correct the er-

ror, the faulty input may needs to be identified. With all these considerations, a complete

circuit is generated as shown in Figure 22. The truth table for this circuit is Table 17.

Figure 22. Complete Majority Voter (After Ref. [1].)

53

A B C Y V_ERR D_ERR CID_1 CID_0
0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1
0 1 0 0 0 1 1 0
0 1 1 1 0 1 0 1
1 0 0 0 0 1 0 1
1 0 1 1 0 1 1 0
1 1 0 1 0 1 1 1
1 1 1 1 0 0 0 0

Table 17. Truth Table of Complete Majority Voter (From Ref. [1].)

New signals CID_0 and CID_1 are used to identify the faulty input, with CID_0

representing the least significant bit. Using the third row of the table as an example, the

voter should be able to capture the error and identify the faulty input pin. The output sig-

nal Y is a 0 and D_ERR, error detection, reports a 1. This indicates that one of input sig-

nals is not consistent and the correct input signal is 0. Furthermore, CID_1 and CID_0

show 1 and 0, respectively, which means the second processor is faulty. Since Y is 0 and

the second input is faulty, it can be concluded that input B has an error and its value is 1.

The schematic of the complete majority voter built in ISE is shown in Figure 23.

All input and output pins are 1-bit wide.

Figure 23. Schematic Symbol of 1-Bit Majority Voter

B. 16-BIT VOTER

Since KDLX has 16-bit output buses, 16-bit voters are needed in order to vote

every bit on these buses. A 16-bit voter is simply composed of sixteen 1-bit voters as

shown in Figure 24. All voters vote in parallel and produce five output buses for five dif-

ferent signals, Y, V_ERR, CID_0, CID_1, and D_ERR.

A Y

V_ERR

B CID_0

CID_1

C D_ERR

54

Figure 24. Sixteen 1-Bit Voters

l{ II ES

SHI 'li<l 'Vi*

II
Ei

5i«l
i9

'V**l \'«»\ 'ijii Ui\

s i

i n. rtr

—y

il eei il

rw nm rmn fTT n *^ rTTTl

g i S I

55

Figure 25 is the schematic symbol used in ISE. The signal name D_ERR is

changed to ERR in order to simplify the notation.

Figure 25. Schematic Symbol of 16-Bit Voter

The voter performs an important role in TMR. It is the device to catch and report

errors. The CFTP in space can have an SEU occur anywhere in the FPGA. If the error is

caught by the voter, it will be corrected. If the voter votes incorrectly, it will be caught

by the voter error detection circuitry. The problem becomes more complicated if an error

occurs on the voter error detection. If the voter voted wrong but the error detection did

not catch it, the error may propagate through the system and corrupt the data. A new cir-

cuit can be added to detect error detection, but adding gates increases the probability of

an error and also increases the complexity. Making a voter that has acceptable reliability

without increasing the probability of an SEU too much is difficult.

C. TMR ASSEMBLY WITHOUT MEMORY

The concept of the TMR is to triplicate processors and vote all output signals to

get correct values. An even number of processors cannot use majority voters. Five or

more processors will increase the circuit size dramatically. As described earlier, this in-

creases the probability of having an error by SEU. The usual compromise is to use three

processors. The TMR does not increase circuitry too much and its efficiency has been

proved in some existing space systems.

In this section, several different architectures will be discussed, which is a good

chance to show how things change when different components are used. Important learn-

ing points will be provided at the end of this chapter.

Y(15:0)
;A(15:0)

V_ERR(15:0)

;B(15:0) CID_0(15:0)

CID_1(15:0)
;C(15:0)

ERR(15:0)

56

1. Schematic and Simulation 1

Figure 26 is the first design of the TMR Assembly for this thesis. Important sig-

nals are indicated with arrows. The three big blocks at the left side are KDLX proces-

sors. The sequence from top to bottom is processor A, B and C. The 24-bit instruction

input buses are instr_a(23:0), instr_b(23:0), and instr_c(23:0), respectively.

 Voters are connected at the outputs of the processors. All of the outputs are

voted. The first three voters at the top are 1-bit voters for control signals and the other

three are 16-bit voters for buses. The voter at the top is the voter for the program read

signal. The read signals for the instruction fetch of all three processors are connected to

this voter to be voted. The second one is the voter for data read signals and the third one

is for data write signals. The three 16-bit voters are for the address, the program counter,

and the data bus, respectively.

The outputs of each voter are collected to a bus. Therefore, there are four buses

on the right side. One data bus is at the output of the data voter, named data_p(15:0).

Since each bus on the right side collects the outputs of six voters, each bus is 51-bits

wide.

Because the data memory used in the ISE has separate buses for the input and the

output, data_p(15:0) is generated as a write bus and data_m(15:0) is generated as a read

bus. The read and write signals are active low. Thus, inverters are used to enable buff-

ers. Without a buffer for isolation, data injected at data_m(15:0) will be voted and sent

out to data_p(15:0) which may cause a bus conflict.

57

Figure 26. TMR Assembly

58

This design so far provides everything needed for a TMR processor based on the

theory described in section B. The next step was to put it on a simulation test bench and

run it. The time constraints are 50 ns for clock high and low time and 10 ns for setup and

hold time. Since only one clock is used in this simulation, the time constraints are trivial.

The simulation results are shown in Figures 27 and 28.

Figure 27. TMR Assembly Simulation 1-1

In Figure 27, the data_m bus offers a series of data regardless of whether the

instruction needs it or not. All instruction buses (i.e., instr_a, instr_b and instr_c) have

the same instruction at the same time. The first instruction, LW R1←Mem(R0+04), is

fetched at point 1. It is not executed until point 2. Since the read signal goes low at point

2, it is reasonable to say it loads data 005A16. Signals cid_0, cid_1 and err all report zero

because all instructions are consistent. Notice that the data on the data_m bus changes

while read_p is still low. A clipping occurs at point 3.

In Figure 28, another instruction, SW R1→Mem(R0+02), is fetched. Since R1

had already fetched data at point 2, here we expected to see 005A16 on the data_p bus.

Unfortunately this is not the case at point 5. The simulation tells us that KDLX has the

59

read signal active low, but it actually reads data at the rising edge. In this simulation, it

read 006116 at point 3 not 005A16, as desired.

Figure 28. TMR Assembly Simulation 1-2

Since the processor reads at the rising edge, the circuit must be able to keep the

data stable to that point. The simulation in Figure 27 shows that 005A16 stays for most of

the duration while read_p is low. However, the bus changes to 006116 at the last instant,

which is not a desirable situation. Thus the next step is to modify the circuit to make the

data stable through the rising edge of read_p. Figure 29 is the modified design.

2. Schematic and Simulation 2

A 16-bit latch is added to keep the input data stable. With this latch, the input

data only changes when the read signal changes which should in theory, provide a perfect

timing match. Simulations of this modified TMR Assembly are shown in Figures 30 and

31.

60

Figure 29. Modified TMR Assembly

gim,lBBj n I y

I

-c^

t m ^ B f
' I 5 5 I

see

= 1 n li c

!■ » I

1 s

to
5

2 V o- .1

UH

E 1 H fi fi

^

m

1. c I p c e

* 8

! I 1 ¥

o
-4—1

CO

v6

61

Figure 30. Modified TMR Assembly Simulation 2-1

Points 6 and 7 in Figure 30 are identical to points 1 and 2 of Figure 27. The im-

provement of the modified TMR Assembly appears at point 8. The latched data is still

available at the point where read_p goes high and all three processors now read the value

005A16. The clipping at point 3 in Figure 27 disappears.

Figure 31. Modified TMR Assembly Simulation 2-2

62

Figure 31 continues the simulation to store the content of R1 to memory location

0216 at point 9. Following the signal write_p to point 10, one can find that the data on

data_p is 005A16. Signals cid_1, cid_0, err and v_err show that no error is reported.

D. TMR ASSEMBLY WITH MEMORIES

Since a working TMR Assembly has been generated, the final step is to hook it up

with memories. The latch added in Figure 29 guarantee that the processors will read

what they need to read. The schematic symbol of the TMR Assembly is shown in Figure

32. The whole circuit is shown in Figure 33.

Figure 32. Schematic Symbol of the Modified TMR Assembly

Many of the signals in Figure 33 are for the purpose of monitoring the simulation.

As a convention, the memory at the left is the instruction memory and the one at the right

is the data memory. Two buffers are used to control the data flow. Data flows into the

data memory only when the write signal is low and flows to the TMRA only when the

read signal is low.

The instruction memory is pre-configured with the following Opcodes: 44030116,

41340616, and 45040716. The first one will load data from memory location 0116 to R3.

The second one will add an immediate value 0616 to R3 and save the result to R4. The fi-

nal instruction will store the content of R4 to memory location 0716. Figure 34 shows the

simulation result.

TMRA

clk_p prog_rd_p

reset_p read_p

staILp write_p

instr_a(23:0) addr_p(15:0)

instr_b(23:0) pc.p(15:0)

instr_c(23:0) data_p(15:0)

data_m(15:0) V_ERR(50:0)

CID_0(50:0)

CIDJ(50:0)

ERR(50:0)

63

Figure 33. Modified TMR Assembly with Memories

64

Figure 34. Simulation of Modified TMR Assembly with Memories

65

Unfortunately, no error was reported but no data was sent out from the data mem-

ory. If this design worked correctly, an output value 000916 should be seen when the

TMRA writes to memory. Obviously, this did not happen when addr_rom was 0E16.

Since no timing mismatches occured anywhere, this design was hard to debug. The

modified TMR Assembly works fine without memories, so the problem could have been

the settings of this test bench. The time constraints of this test bench are listed in Table

18.

Processors Memories
Clock High Time 50 ns Clock High Time 50 ns
Clock Low Time 50 ns Clock Low Time 50 ns
Input Setup Time 10 ns Input Setup Time 5 ns
Output Valid Delay 10 ns Output Valid Delay 5 ns
Time Offset 0 ns Time Offset 0 ns

Table 18. Time Constraints of Test Bench for Modified TMR Assembly

Memories have less setup time and hold time, so they should be ready before the

processors need their data. From this point of view, the test bench seemed not to be the

problem. While the problem might have been incompatibility with the choice of mem-

ory, the next alternative approach was to try the original TMR Assembly without the data

latch as shown in Figure 26. Since all input and output signals are the same with this

modified TMR Assembly, the schematic and complete design of the original TMR As-

sembly are still identical to Figures 32 and 33, respectively. Using the same test bench

and simulation as the first design produced the result shown in Figure 35.

This version works. There is almost no timing mismatches and the data clippings

are small enough to be ignored. This circuit sends out exactly the right value after the

last instruction is executed. When addr_rom is at 0E16, 000916 is sent out from the TMRA

to the data memory at the lower half clock cycle. The data as seen on out_mem has an-

other half clock delay caused by memory. Signals cid_1, cid_0, err and v_err verify that

no error is reported.

66

Figure 35. Simulation Result of First TMR Assembly with Memories

67

The final conclusion is that the latch added in Figure 29 does not help when the

TMRA is connected with memories. The simulation results in Figures 30 and 31 worked

because the input data was set manually. These manual changes set the error regardless

of the changing of the read or write signals from the processors. Therefore, a latch was

needed in this manual test bench.

When the TMRA is connected with memories, the memories will interact with the

write signal of the KDLX even though the detailed interaction among them are not visible

in the test bench. A latch in the TMRA in this design will ruin the timing between the

TMRA and the data memory. Thus, the simulation result in Figure 34 shows that the

TMRA is totally unable to communicate with the data memory, while in Figure 36, with-

out the latch the design works.

E. TEST ON FAULT TOLERANCY OF TMR ASSEMBLY

The concept of the TMR Assembly has been described and explained earlier in

this chapter. The usage of the voters has been emphasized as well. Since the TMR As-

sembly has been designed and simulated, the next requirement is to test the fault-tolerant

ability. In order to provide errors, three instruction memories are necessary and more

signals need to be monitored.

1. Schematic and Simulation

Figure 36 is a complete schematic with all of the components for the fault-tolerant

testing. The concept is to change one of the instructions loaded into the TMRA and see if

the voters can catch the error, correct it, and report it. Since the inconsistent instruction

will lead one of the KDLX processors to do something different that the other two, voters

should flag the inconsistency and point out the faulty processor, i.e., either cid_1 or cid_0

or both should not be zero. Some bits in the error detection bus, err, ought to be 1 when-

ever any error exists. If all these signals work properly, the TMRA will be able to catch

an error and trigger an interrupt routine.

Three instruction memories, ROM A, ROM B and ROM C, are pre-configured

with three different instruction maps. The data memory at the right side, RAM, has non-

repeated value in its memory locations. This makes the data in the simulation more eas-

68

ily identified since each memory address holds a unique value. Memory maps for the

ROMs and RAM are displayed in Table 19.

Figure 36. Schematic for Fault-Tolerant Testing

B
B
3 o

o"
I

I
>

69

 ROM A ROM B ROM C RAM
00 000000 00 000000 00 000000 00 20
01 000000 01 000000 01 000000 01 21
02 000000 02 000000 02 000000 02 22
03 44010A 03 44010A 03 44010A 03 23
04 440203 04 44020B 04 44020B 04 24
05 44030C 05 440A0C 05 44030C 05 25
06 44040D 06 44040D 06 350911 06 26
07 000000 07 000000 07 000000 07 27
08 000000 08 000000 08 000000 08 28
09 000000 09 000000 09 000000 09 29
0A 000000 0A 000000 0A 000000 0A 2A
0B 450106 0B 450103 0B 450103 0B 2B
0C 450208 0C 450207 0C 450208 0C 2C
0D 450309 0D 450309 0D 450302 0D 2D
0E 450410 0E 450410 0E 450410 0E 2E

Table 19. Instruction And Data Memory Maps

The inconsistent instructions are grayed out in Table 19. The TMR Assembly

simulation is shown in Figures 37, 38, and 39.

Figure 37. Simulation of Fault-Tolerant Testing

70

Figure 38. Simulation of Fault-Tolerant Testing (continued)

Figure 39. Simulation of Fault-Tolerant Testing (continued)

71

In Figure 37, when the signal reset_p goes from low to high, the TMRA starts

fetching instructions. Notice the signal out_mem shows 2016 which is the first value at

address 0016. The instructions at address 0316 of the ROMs are fetched at point 1. Fol-

lowing that, three more instructions are fetched in sequence. The first instruction,

44010A16, is executed at point 2 in Figure 38 while addr_rom is 0516 and addr_ram is

0A16. The addr_rom contains the address of the instruction being fetched, i.e., 0516. The

addr_ram contains the address that the first instruction, i.e., 44010A16, is using to access

RAM. In this case, 0A16 is the correct address for this first instruction.

From this point in the simulation, inconsistencies have been introduced in the in-

struction memory. The bit distribution of the bus needs to be introduced in the next sec-

tion before the simulation analysis is presented.

2. Bit Distribution

Recall the schematic in Figure 26. Four signals (i.e., V_ERR, CID_0, CID_1, and

ERR) are collected into four different buses and each bus is 51-bit wide. Since one 51-bit

bus consists of outputs from 6 different voters, each voter has a range in the bus distribu-

tion. By looking at the bits in the distribution, one can tell which signal on which proces-

sor is wrong. The bit distribution for CID_1, CID_0, and ERR is shown in Figure 40.

CID_1(50:0) & CID_0(50:0) & ERR(50:0) Bit Distribution

data(15:0) pc(15:0) addr_int(15:0) wr rd prog_rd
50 35 34 19 18 3 2 1 0

Figure 40. Bit Distribution of CID_1, CID_0 and ERR Buses

In Figure 40, the bit distributions of all three buses are identical. For example, a 1

at bit 20 of the ERR bus means that one of the KDLX processors has an error in its pro-

gram counter. At the same time, bit 20 of the CID_1 and CID_0 buses will point out the

faulty processor.

3. Simulation Analysis

The three instructions fetched by the TMRA at point 1 in Figure 37 are identical so

no error is reported at point 2. Since there is no error in any one of the processors, the

cid_1 and cid_0 buses will not identify any processor. It was mentioned that the memory

72

needs a half clock cycle to send out data once it receives signals. That is why the first

data is not on the out_mem bus until point 3. It can be verified that the TMRA is loading

a correct value.

When the instructions become inconsistent, the error detection signal is no longer

zero. Meanwhile, the cid_1 and cid_0 locate the faulty processor. This can be checked

from point 4 to 6. Figure 41 is the bit distribution of the error detection signals for the

first Opcode, 44010A16. The hexadecimal number in the simulation is translated to a

binary number when doing this data analysis.

Figure 41. ERR Analysis for the First Opcode

It is obvious that the sixth bit is inconsistent in three processors. In order to verify

the error, the signals cid_1 and cid_0 should be analyzed. Converting the hex numbers in

the simulation to binary numbers and comparing the bit distribution with Figure 40 indi-

cates that (Figure 42) the inconsistent bit is on the address bus and Processor A is the

faulty processor. Recall from Table 17 that cid_1 is the most significant bit, so 012 stands

for the first processor (i.e., Processor A). It is true that the instruction at address 0116 in

ROM A is the actual location of the error, but since this instruction is only sent to the first

processor in the TMRA, Processor A is identified as faulty.

Figure 42. CID_1 and CID_0 Analysis for the First Opcode

progrd

wr

r

addrjnl{15:0)
 ^

~^

rd

Bit 50 49 11 10 9 8 7 A 5 4 3 2 10
cid 1
cid 0

0
0

0
(1

 0
 0

0
0

0
0

0
1)

0 I (■) \ 0 0
oli/o 0

0 0 0 (■)
0 (1 0 []

Processor A

73

The reason that the error is at bit 6 is because that is the only location where the

output bits are not consistent in the three processors. Figure 43 shows the situation.

Figure 43. Address Comparison for the First Opcode

The second Opcode in ROM B has an incorrect destination register. Since there

are no output signals on KDLX for the destination register, point 4 in Figure 38 reports

no error, even though this wrong Opcode loads a correct data into the wrong register.

The contents of R3 are now inconsistent between the three processors as are the contents

of R10. This kind of error will only be found when the content of the faulty register is

used. Point 9 in Figure 39 stores the contents of R3 to memory location 0916. It is known

that the data in R3 is wrong in Processor B, but the Opcode difference at point 9 also

means that the memory address of Processor C is wrong. Figure 44 shows the simulation

result for point 13 in Figure 39. Six inconsistent bits were caught.

Figure 44. ERR Analysis at Point 13

The contents of R3 in Processor B are zero, but in Processors A and C they are

2C16. For cid_1 and cid_0, it is expected that the data portion in the bit distribution indi-

cates that Processor B is wrong. Figure 45 shows the inconsistent bits between the cor-

rect and wrong data.

74

Figure 45. Data comparison for R3

The bit distribution of cid_1 and cid_0 should put 002C16 in the data portion and

indicate all inconsistencies caused by Processor B. Figure 46 illustrates that it does.

Figure 46. CID_1 and CID_0 Data Portion Analysis at Point 13

In addition, the address differences from Processor C at point 9 should also be in-

dicated by cid_1 and cid_0. This is shown in Figure 47.

75

Figure 47. CID_1 and CID_0 Address Portion Analysis at Point 13

Notice that both cid_1 and cid_0 at point 13 have hex number 58. The inconsis-

tent bits of the addresses are reflected correctly in the bit distribution. The Processor C is

identified as the faulty one that gives a different address to the voter than the others. This

proves that cid_1, cid_0 and err signals can deal with these kinds of multiple errors and

still report flawlessly.

Following the same procedure to analyze data on buses, one should be able to re-

alize how the voter works and the way to utilize these signals for an interrupt routine.

The rest of the simulation also performs correctly. The Opcode at address 0616 of ROM

C is a disaster since there is no such instruction. Based on the experience just learned,

this kind of error will still be corrected. The inconsistency of register contents will be

corrected the next time they are used and the wrong addresses will not affect anything as

long as the other two addresses are correct. Correct data will still be fetched at point 7 in

76

Figure 38. The memory output data bus switches back to 002016 at point 8. Next, three

store instructions are fetched in series. The first data written to memory shows up at

point 10. Simple address inconsistencies at point 11 and 12 are easily analyzed. Errors at

point 14 are detected, even though all three Opcodes, 45041016, are the same. That is be-

cause the data loaded into R4 earlier was different and the error occurs only when R4 is

routed to the output.

F. IMPORTANT SIMULATION CONCEPTS REVIEW

Simulation results are used a lot in this chapter to explain the operation of the

TMR. Fundamental ideas on how to construct a test bench and how to analyze results

have been established. Due to the different properties of the different components, a de-

sign may not work when additional components are connected. Generating a good test

bench is not easy since most timing problems are unpredictable. Some important knowl-

edge for simulation needs to be introduced in order to help shrink the time for invention.

1. KDLX Was Designed to Work with Asynchronous Memory

In a personal conversation with Dr. Kenny Clark, I learned that the KDLX was

designed for an asynchronous memory. Although it will work with a synchronous in-

struction memory, an asynchronous memory is recommended since one should assume

that the instruction memory and the data memory are in the same physical memory. Al-

ways provide some different time constraints between KDLX and memories when gener-

ating a test bench.

2. Start with A Simple Test Bench First

Trying to test everything on a new design is a bad idea. Too many signals need to

be tracked and multiple errors are hard to debug. It is a good idea to start with a simple

test bench which only tests a small part of the design. Revise the test bench to become

more complicated step by step. It is also good to individually test every component gen-

erated before constructing a top-level design.

3. Test Bench Is Optimized for the Current Design

As introduced earlier, the simulations have different time constraints. A test

bench is used to check to see if a design works under reasonable assumptions. Circuits

will be modified many times until the full design is complete. It is hard to specify the

77

requirement for a test bench before a circuit is actually built, so it is almost impossible to

have an ideal test bench for a full design and every single component. In addition, a test

bench that works on the top-level design may not fit to a single component. Timing

mismatches always change with different wiring.

4. Keep Old Designs

It was shown in the TMR Assembly schematic that sometimes an old design is the

real useful one. Incorrect settings for a test bench can mislead a designer to make a

wrong decision and a modified design can become useless when other components are

connected. Features on different components sometimes will balance out timing mis-

matches between them. Going over previous designs helps a designer to retrieve original

thoughts and keeping those files available is important.

5. Working on the Copy of Source

Based on personal experience, it is good to add a copy of a tested circuit into a

large design rather than adding the original. This not only keeps the integrity of the

original file but also makes it easy to review. Without making a copy, the new design

will associate with the original design. Any modification in the new design directly af-

fects the original file. Therefore, it will be impossible to keep the original source file.

Keeping the integrity of each circuit is also important. People always want to see

and test the fundamental design before they jump into the full design. For example, a

new designer may want to understand voters before realizing the TMR Assembly. Mak-

ing all correct and incorrect circuits into one project is convenient for a designer, but this

does not help other people to understand. By the way, having all sources in one project

lacks independency while doing individual tests.

There is no question that making a copy of a source file definitely increases the

size of folder and requires more time to manage individual projects. The big benefit of

this is that a designer can always have original designs in hand as well as all projects left

are tested and ready to go. A new designer thus has a chance to see the function of a

voter before sinking into the confusion of the complete TMR Assembly. Since another

new project will be generated once a project has failed, a design like the TMR Assembly

may have different versions. The useful version contains only useful schematics and test

78

benches. From this point of view, all projects left are not only useful but also have few or

no junk sources inside.

Since hard drive space nowadays is huge and cheap, working on a copy file not

only gives people a chance to review but also make all projects look clean and easy to

understand.

G. CHAPTER SUMMARY

This chapter introduced the kernel of the full TMR design, i.e., the TMR Assem-

bly. Understanding how voters catch errors and how to analyze simulation results is the

main point in this chapter. Many explanations of simulation results are provided in order

to help one realize the spirit of the TMR design. After reading so many simulations, one

should have a feeling on how to use and generate a test bench. A quick review on simu-

lation concepts is put at the end of this chapter after one has studied some simulations and

before he/she jumps into a more complex design.

Other components associated with the TMR Assembly like the Reconciler, Inter-

rupt and Error Syndrome Storage Device (ESSD) will be explained in following chapters.

The Reconciler is an interface between KDLX and memory; the Interrupt is the one gen-

erating ISR; the ESSD is responsible for storing error syndromes whenever an error oc-

curs.

79

VI. RECONCILER

Due to the different memory architectures between KDLX and CFTP as described

in Chapter IV, the Reconciler is used to satisfy the timing requirements on both sides and

properly route the data. Since KDLX can only access memory via load and store instruc-

tions, the Reconciler only needs to monitor the read and write signals from KDLX and di-

rect the data to the correct destinations.

In this chapter, no error detection or correction will be discussed since the Recon-

ciler is not responsible for this. The TMR Assembly is responsible for error detection.

Error correction is done by the Interrupt and the voters in the TMR Assembly. Storing

the error syndromes is the job of the Error Syndrome Storage Device (ESSD).

A. CONSTRUCTION AND FUNCTION

Only one physical memory is available in the CFTP. In order to make this one

memory act as the both instruction memory and data memory in each KDLX clock cycle,

the physical memory has to run at twice the speed of KDLX. For the same reason the

Reconciler has also to run twice as fast as KDLX. For each KDLX clock cycle, one ad-

dress bus access and one data bus access for instructions needs to be available. Mean-

while, one address bus and one data bus access for data also needs to be available. To

fetch an instruction and do a data read or write, the Reconciler has to act as an instruction

memory in the first half of the KDLX clock cycle and act as a data memory in the second

half of the KDLX clock cycle. This function is illustrated in Figure 48.

pc(15:0) is available

instr(23:0) is available

addr_int(15:0) is available

data(15:0) is available

Instruction fetch Data read or write

KDLX clock

Memory or
Reconciler

clock

KDLX
signals

Figure 48. Illustration of Reconciler Function

80

The Reconciler is composed of a state machine coded in VHDL and is presented

completely in Appendix C, section A. The state machine contains five states: one starting

point, two for normal operations, one for read, and one for write. This function can be

seen clearly in Figure 49.

0

1

2

3

State

State 0

State 1

ReadState

WriteState

rd_r = 1
and

wr_r = 1

rd_r = 0 and wr_r = 1

rd_r = 1
and

wr_r = 0

reset_r = 1

reset_r = 0

Figure 49. State Machine of the Reconciler

The name of the state is on the top of each circle except for the initial state named

State. The number in each state is the state number designed for tracking purposes in the

simulation. The two normal operations, State0 and State1, are identical and are for fetch-

ing instruction. Without reading or writing, these two states just pass the program

counter to memory, fetch the instruction and send it back to the KDLX. At this time, the

memory acts as a ROM and its data-input bus is in a high impedance state. Since only

the instruction bus is used, the data bus of the KDXL is also in a high impedance state.

State State1 is a duplication of State0 so the state machine can be revised to stay at State0

when neither rd_r nor wr_r is 0. The reason for using two states is to provide tracking in

simulation. Since the Reconciler runs twice as fast as the KDLX, reading and writing ac-

tions only occur at State0. Without the separation into two states, it is hard to tell if a

read or write occurs at the proper state.

81

When rd_r is 0 and wr_r is 1, the state machine goes to the ReadState. KDLX

wants to read data from memory so the Reconciler will pass a high write signal to the

memory and direct data from the memory to KDLX. When rd_r is 1 and wr_r is 0, the

Reconciler knows that KDLX wants to write data to the memory, so it passes a low write

signal to memory and directs data from KDLX to memory.

The initial state, State, is not used until the next reset. It is null and there are no

actions in this state. Without this state, the state machine would use State0 as the initial

state and start at State1 after reset.

B. SCHEMATIC AND SIMULATION OF RECONCILER ONLY

Converting a VHDL code to a schematic symbol is a useful function in the ISE

software. The schematic symbol of Reconciler is shown in Figure 50.

Figure 50. Schematic Symbol of Reconciler

Simulation of the Reconciler itself is quite simple. Since it is basically a state

machine, a state will either stay at current state or jump to a new state every clock cycle.

Figure 51 is the simulation result.

Figure 51. Simulation Result of the Reconciler

rec
- clk_r

- reset_r

-rd_r

- wr_r

E addrin_r(15:0)

Epc_r(15:0)

E datain_r(23:0)

dataout_r(23:0) :

wrout r -

state_r(3:0) I

instr_data(23:0) I

mem_data(15:0) :

82

The signal at the bottom in Figure 51 is the state number used to track which state

is active. The state machine starts at State0 after reset. The signal addrout_r is the bus

connected with the memory address bus. It sends out either pc_r or addrin_r depending

on whether the system is doing an instruction fetch or a data read/write. In State0 and

State1, the addrout_r is always the same value as pc_r. The memory data output bus

connects with the signal datain_r on Reconciler and sends out either an instruction or a

data value. When rd_r is low, data on datin_r will be forwarded to mem_data which

connects to the data bus of KDLX. When wr_r is low, the state machine goes to the

WriteState. At this state, data from KDLX is available on mem_data and Reconciler will

direct this data to dataout_r which connects to the data input bus of memory.

The instr_data is never in a high impedance state regardless of whether the data

on datain_r is an instruction or not. The reason is to make an instruction stay available

until the next KDLX clock cycle. Even during ReadState and WriteState, the next in-

struction for the KDLX is alive on the instruction bus. Remember that the Reconciler is

twice as fast as the KDLX. If the next instruction is only available for the first half of the

KDLX clock cycle, it will not be fetched at the rising edge of the next KDLX clock. This

concept will be described again when the Reconciler is hooked-up with a KDLX proces-

sor.

C. SCHEMATIC AND SIMULATION OF RECONCILER WITH KDLX

The last step for testing the Reconciler is to simulate it with a KDLX. The sche-

matic of this part of the design is shown in Figure 52.

83

Figure 52. Schematic of Reconciler with KDLX and Memory

The memory offered in the ISE software is not a real Von Neumann architecture.

Instead of having one bi-directional data bus, the Reconciler is designed to have two

separated buses for data, datain_r(23:0) and dataout_r(23:0). The mem_data(15:0) on

Reconciler is bi-directional in order to transfer data back and forth with the KDLX.

Id
-Uh

-. ,! Ml

? ji !i
ITT

«
r'

i I

84

The simulation for this circuit is done with a series of load and store instructions

in order to see if the Reconciler can handle both instructions and data correctly. Figure

53 is the first part of the simulation result.

Figure 53. The First Part of the Simulation Result for Reconciler

In Figure 53, the first instruction in memory is fetched at point 1 when pc_p was

sent. It can be seen clearly from the status of state_r that the Reconciler is in double

speed. At point 2, the Opcode 44014016 is executed and wants to load data into R1. At

the same time, the KDLX is going to fetch the Opcode 44044316. The address of data for

the first instruction is available at point 3 in this time interval. Therefore, the signal

addr_m fetches pc_p at the first half of the KDLX clock cycle and fetches addr_p at the

second half of the KDLX clock cycle. The data at memory location 004016 thus is sent

from memory to KDLX when state_r is 2. Notice that at this time interval Opcode

44044316 is available on the bus until the next KDLX clock. This is important since

KDLX is triggered at the rising edge of the clock. Failure to keep an instruction until the

next rising edge will mean that the KDLX will not be able to fetch this instruction and the

memory location for data will not appear at point 4. This is why the instruction bus is not

85

set to a high impedance state at the ReadState and WriteState in the Reconciler. The rest

of this simulation in Appendix A, section H does a series of writes followed by a series of

reads in order to check if the Reconciler functions properly.

D. TIMING CONCERNS

An added complexity for this simulation is the fact that it has three different

clocks. To make this simulation work, the time constraints of the test bench have to be

set properly. The sequence of execution in this circuit is that the KDLX sends its pro-

gram counter to the Reconciler first. Then Reconciler forwards this address to the mem-

ory. Next, the memory selects the instruction and sends it to the Reconciler. Finally, the

Reconciler forwards this instruction to the KDLX. This is a simple example of how

KDLX fetches an instruction.

In order to successfully fetch an instruction, the KDLX has to have its program

counter ready before the Reconciler needs it. The Reconciler has to have the address set

before the memory is ready to receive it. Considering setup time and hold time for each

clock, the relationship among these three clocks is shown in Figure 54.

KDLX
Clock

Setup Time Hold Time

Setup Time Hold Time

Setup Time Hold Time

KDLX

Reconciler

Memory

Setup Time Hold Time

Setup Time Hold Time

Setup Time Hold Time

Setup Time Hold Time

Setup Time Hold Time
Figure 54. Timing Relationship Among Clocks

It does not matter that the Reconciler and memory clocks are faster than KDLX

since the KDLX has to be ready whenever the Reconciler needs data. In Figure 54, all

three clocks are shown together as they were in the simulation for comparing timing re-

quirements. Since the Reconciler has a hold time longer than KDLX, the KDLX will be

86

ready before the Reconciler is ready. The Reconciler will be set before the memory

needs input signals.

When KDLX is executing a read-data instruction, the memory will have the data

available later than the KDLX starts to read. Therefore, a little clipping occurs every

time that KDLX reads data. To minimize this clipping, the setup and hold time between

the three clocks have to be as close as possible.

In this simulation, if any two clocks have identical setup and hold time, the testing

will fail. Since the Reconciler is a state machine, the current state will jump to a different

state if the conditional requirements are not met in time. This causes the KDLX to fail to

interact with the memory; therefore the following instructions will not be fetched.

E. CHAPTER SUMMARY

This chapter introduced the function of the Reconciler in the TMR design. This

component is designed to consolidate two different architectures in a circuit and is not di-

rectly associated with error detection or correction in the TMR. This is the first time in

this thesis that time constraints were discussed in detail since there are specific timing re-

quirements for the Reconciler. The concept of establishing the setup time and hold time

for a test bench is more important after this chapter because more components are in-

volved in the TMR design.

Another component (called Interrupt) is discussed in the next chapter. This com-

ponent leads the TMR design to the Interrupt Service Routine (ISR) when an error oc-

curs. How to intercept the current execution of the KDLX to start an ISR and how it

works with other components in the TMR design will be described as well.

87

VII. INTERRUPT

The TMR Assembly, consisting of processors and voters, is able to detect an error

and correct it. Even though voters are able to correct errors as they come out the system,

whichever of the KDLX processors that caused the error will still have the wrong data in-

side. If an error in one processor is not corrected in time, another error occurring in an-

other processor may not be detected by voters. As was described earlier in Chapter V, a

majority voter is not able to handle multiple identical errors.

In order to correct an error in the KDLX, the normal operation has to be stopped

and all contents of registers in the three processors have to be voted. The voters will cor-

rect any inconsistency between the three processors in this process while storing all cor-

rect data into memory and then reloading them back into the original registers. Once this

procedure is done, all contents of registers are identical between the three processors.

The Interrupt is the circuit used to stop normal operation and switch the circuit to do this

error correction.

A. CONSTRUCTION AND FUNCTION

The Interrupt is also a state machine coded in VHDL. The state machine is

shown in Figure 55. The concept is to have it look for the error detection signal from the

TMR Assembly. If an error occurs, it will latch the current program counter and send out

a TRAP instruction to processors. Two NOPs follow the TRAP instruction in order to

clean the pipeline of the processors. Only two NOPs are needed because the TRAP in-

struction will start to be executed right after the second NOP. Any instruction after the

second NOP will either be useless or mask out instructions that the TRAP wants to fetch.

After the second NOP, the TMR Assembly is in the ISR and the Interrupt waits for an

RFE instruction from memory, placed to mark the end of the ISR.

When the processors receive the TRAP instruction sent from Interrupt, they jump

to a specific memory location and start the ISR for storing and reloading the contents of

all of the registers. The last instruction in the ISR is the RFE instruction. When memory

sends out this instruction, it will be seen by the Interrupt and the Interrupt will replace

the RFE instruction with a new Jump instruction. This new Jump instruction is con-

88

structed by the Interrupt from the Opcode C816 plus the latched program counter to force

the processors to jump back to where the trap occurred.

0 1 2State

State_0 State_1 TrapState

reset_i = 1
3

NopState_0

4 NopState_156

WaitStateBackState

err = 0
err = 1

err = 1

no RFE

RFE

reset_i = 0

Figure 55. State Machine of Interrupt

Recall the function of TRAP and RFE instructions in Table 13. The reason to re-

place the RFE instruction with a Jump instruction is because the RFE instruction does not

jump back to where the TRAP instruction occurs. It is known that the RFE will jump to

the address stored in the IAR which is two clock cycles later than when the TRAP oc-

curred. The choice was between revising a tested version of KDLX and building a sepa-

rate circuit to be able to generate a new Jump instruction. The separate circuit is easier to

achieve for this Interrupt since it is a state machine and is coded in VHDL. First, a state

machine can do several different things in one clock cycle. Because the new Jump in-

struction is not needed until the BackState, two NOP clock cycles are sufficient for gen-

erating an instruction. Second, data on different buses can be more easily combined in

VHDL than other methods, e.g., schematics.

The Reconciler discussed in the previous chapter only allows an instruction to be

fetched in the first half of the KDLX clock cycle, but the state machine shown in Figure

55 works with a KDLX at the same speed. In order to interrupt and insert instructions at

the correct timing, the Interrupt has to match the speed of the Reconciler. Doubling the

89

speed of the Interrupt is not the same as that of the Reconciler since the Interrupt has

several different states in series. The methodology here is to duplicate each state, which

makes the state machine twice as long. The new state machine is shown in Figure 56 and

its VHDL code is in Appendix C, section B.

State 0

State0_A

1

State0_B

2

TrapState_A

3

TrapState_B

4 NopState0_A

5 NopState0_B

6 NopState1_A7

NopState1_B

8

WaitState_A

9

10

WaitState_B

BackState_A

11BackState_B

err = 0

err = 1

no RFE

RFE

reset_i = 1

reset_i = 0

Figure 56. New State Machine of Interrupt

The first two states, State0_A and State0_B, do not need to be duplicated in spite

of the even number of states. The state machine is also revised so that only State0_B can

go to TrapState_A. In spite of double speed, State0_A still needs to go to State0_B even

if an error occurs at State0_A. On the other hand, the KDLX reads and writes data at the

falling edge of clock, which means that a data error always occurs at State0_B. After

NopState1_B, the TMR design starts the ISR and the WaitState_B waits for the RFE in-

struction. Once the RFE instruction is sent out from memory, the Interrupt takes over the

instruction bus again and injects the new Jump instruction at the BackState_A. The TMR

90

design goes back to normal operation when the new Jump instruction is executed by the

processors.

B. SCHEMATIC

The functions of Interrupt can be easily understood from the simulation result

shown in Appendix A, section I. The simulation for the Interrupt only is not explained

here since the state_i indicates active states in Figure 56 explicitly. Figure 57 is the

schematic symbol of Interrupt.

Figure 57. Schematic Symbol of Interrupt

The input signal err is used to monitor the occurrence of an error. When this sig-

nal goes high, the ISR starts. Once the ISR is triggered, the program counter where the

error occurs is sent to pc_in(15:0) where it will be latched and this latched program

counter will be output instantly at pc_out(15:0). The Interrupt uses signal sel_i(23:0) to

switch a mux and sends out the TRAP instruction via trap_i(23:0). After that, sel_i(23:0)

switches the mux back to normal and the input signal rfe_i(23:0) starts monitoring the

Opcodes passing through on the instruction bus. When the RFE instruction is sent out

from memory, sel_i(23:0) actives again and trap_i(23:0) sends out the new Jump instruc-

tion. Consequently, the TMR design is back to its normal operation. Figure 58 is the de-

sign of the Interrupt with a processor and two memories.

interrupt
clkj

reset_i

err

rfe_i(23:0)

pc_in(15:0)

sel_i(23:0)

pc_out(15:0)

trap_i(23:0)

state_i(3:0)

1
1

1

1 1 1

91

Figure 58. Schematic of the Interrupt with KDLX and Memories

92

The mux located between instruction memory and KDLX is used for Interrupt to

inject the TRAP instruction. Normally, the KDLX fetches instructions from the instruc-

tion memory and the mux allows this traffic to pass. When an error occurs, the mux con-

trolled by Interrupt immediately switches to the other bus and a TRAP instruction gener-

ated by the Interrupt will be sent to the KDLX. The original instruction at this time is

blocked on the bus and the KDLX receives the TRAP instruction instead. The Opcode

for the TRAP instruction in this thesis is 28003016 which uses memory location 003016 as

the starting point of the ISR. This value can be easily changed in Interrupt’s VHDL

code. The basic idea is not to have the ISR address too close to the address of normal op-

erations in memory to keep it from being overwriten. Simulations in this thesis are care-

fully designed and small address spaces let people see the complete implementation in

memories.

C. SIMULATION

Table 20 shows the contents of the memories and the registers before and after the

simulation.

Instruction Mem
0000

01
02 440101
03 440202
04 440303
05 440404
06 440505
07 440606
08 440707
09 440808
0A 440909
0B 450110
0C 450211
0D 450312
0E 450413
0F 450514
10 450615
11 450716
12 450817
13 450918
14 450A19
15 450B1A
16 450C1B
.
.
.
.

.

.

.

.

2C

01 0044
02 0045
03 0046
04 0047
05 0048
06 0049
07 004A
08 004B
09 004C
10 0055
11 0066
12 0077
13
14
15

Data Mem
00
01 0044
02 0045
03 0046
04 0047
05 0048
06 0049
07 004A
08 004B
09 004C
0A
0B
0C
0D
0E
0F
10 0044
11 0045
12 0046
13 0047
14 0048
15 0049
16 004A
17 004B
18 004C
19

Register
2D
2E
2F
30 000000
31 000000
32 000000
33 450420
34 450520
35 450620
36 450720
37 411A11
38 411B22
39 411C33
3A 000000
3B 000000
3C 000000
3D F80000
3E 000000
3F 000000
40 000000
41
42
43
44
45
46

Table 20. Tables of Registers and Memories in Simulation

93

Part of the complete simulation is shown in Figures 59 and 60. An error is seen at

point 1 and the instruction at point 2 is intercepted by the Interrupt. It can be seen clearly

that the value of signal sel_i changes and a TRAP instruction followed by two NOPs are

injected at point 3.

Figure 59. Partial Simulation Result of Interrupt with KDLX

One important thing here is that the time an error is seen is not the time an error

occurs. The reason is because the KDLX is pipelined and the memory stage is the fourth

pipeline stage. Including the time for the Interrupt to respond, the total delay from the

instruction causing the error is four KDLX clock cycles. This feature cannot be seen in

this simulation because the error was set manually.

The program counter latched by the Interrupt at point 3 is 000816 in this simula-

tion. The instruction intercepted is 44060616 which is at address 0716 in Table 20. The

concept is to jump back to where the TRAP was inserted. Theoretically, the program

counter latched should be 000716 not 000816. Because of the change of the pc_p at point

3 and the instruction delay from memory, the latched program counter is a wrong value.

Another possible reason is since this error is generated from the test bench not from the

94

circuit itself, the timing for the occurrence of an error could be in the wrong place. This

issue will be discussed again and resolved in Chapter VIII when the full design without

ESSD is presented.

The TRAP instruction inserted at point 3 affects the circuit at point 5. Opcodes

from instruction memory address 3016 to 4016 are the ISR. Instructions in the ISR can be

related or unrelated to the original commands, but the purpose is to correct the error.

Since there is no actual error in this simulation, the ISR is designed just to do something

else. The full function of the real ISR is to store all contents of the registers to memory

and reload these contents back to registers. The ISR in this simulation is incomplete.

Figure 60. Partial Simulation Result of Interrupt with KDLX (continued)

Storing the contents of R4 to R7, the simulation shows R6 and R7 at point 6 are

not loaded with any value. This proves that the Interrupt can successfully insert the

TRAP instruction. At point 7, the RFE instruction (i.e., F8000016) is detected by the In-

terrupt. Instantly, sel_i switches to zero and trap_i sends out the new Jump instruction,

C8000516. As described earlier, the new Jump instruction is formed from (C816+latched

program counter). Therefore, the Opcode C8000516 is generated and executed at point 8.

95

The rest of simulation in Appendix A, section J checks the contents of registers to verify

the operation.

D. CHAPTER SUMMARY

 The functions of the Interrupt were described and simulated in this chapter.

When an error occurs, the Interrupt should lead the TMR design to do error correction

and also be able to bring the circuit back to its normal operation. The purpose is to cor-

rect an error as soon as possible after it occurs. Thus the error will not be propagated

making the circuit lose control.

The first design of the Interrupt was to replace instructions in memory in order to

implement the ISR. This could not be done in this design because a ROM is used as the

instruction memory. Since the real CFTP design uses only one RAM, the instruction set

could be changed in memory. However, changing original instructions is the last thing

people want to do because it may cause an unrecoverable error.

In the next chapter, the full design without ESSD will be introduced. The usage

of the ISR will be described clearly and the interactions between Interrupt and Reconciler

will be expressed as well. The simulation of the full design should clarify any confu-

sions among the different components.

96

THIS PAGE INTENTIONALLY LEFT BLANK

97

VIII. THE FULL DESIGN WITHOUT ESSD

The full design in this chapter consolidates the TMRA from Chapter V, the Recon-

ciler from Chapter VI and the Interrupt from Chapter VII. The TMRA contains three

KDLX processors and six voters. All outputs of the processors are voted and any error

will be corrected. The Reconciler is responsible for integrating the Harvard and Von

Neumann architectures. It runs in double speed in order to act as an instruction memory

in the first half of the KDLX clock and as a data memory in the second half of the KDLX

clock. The component used to correct errors besides the voters is Interrupt. It intercepts

normal operation of the TMRA when an error occurs, forces it to do an ISR and makes it

jump back to normal operation after the error is corrected. The error signal for the Inter-

rupt is given by the TMRA. For this design the voter is assumed to be error-free and the

voter error detection signal is not used.

Each component discussed earlier has been simulated to prove its function with or

without the KDLX and memories. Simulating all these components together in a circuit

should be able to catch and correct an error. This is the goal for the full design and its

function will be proved in this chapter.

A. SCHEMATIC

The TMRA itself basically connects with the memories as just one KDLX would.

Most input and output buses are the same except the number of signals increases or de-

creases. The Reconciler sitting between the TMRA and the memory has to receive all

output signals that the original KDLX has, except the program read signal, i.e., the read

and write signals, the program counter, the address for data, and the data bus. The Inter-

rupt needs the error signal to trigger the ISR, the program counter to generate a new

Jump instruction, and instructions for doing TRAP, RFE and Jump.

In order to test the circuit, several buses and memory have to be triplicated. The

way to test the error handling of the system is to program an inconsistency into one of the

three memories and expect that the circuit can catch the error and correct it. Without this

artifice, the Interrupt will never work and the ISR will never be triggered. The alternate

98

would be to assign an error signal to change data on the bus manually in the test bench

and that is not realistic. The full design constructed for testing is shown in Figure 61.

Figure 61. The Full Design

99

In Figure 61, only the Interrupt is unchanged since it does not have any data bus

connections. Three RAMs are used, and a bus connects each to one of the processors.

Therefore, both Reconciler and TMRA have more buses than before. The three muxes at

the bottom left are used to intercept the TRAP and Jump instructions. The box at the top

left (called or51to1) is coded by VHDL and ORs 51 bits from ERR(50:0) into 1 bit. Any

error that occurs at any output signal of the KDLX will trigger the ISR. The revised

VHDL code for Reconciler is in Appendix C, section C.

Because the Interrupt must monitor a memory bus in order to detect the RFE for

testing, one of the memories must always be correct. This design chooses RAM A as the

monitored RAM; therefore its contents are always correct.

B. SIMULATION

The three RAMs are pre-configured as shown in Figure 62. In order to express the

concept of the TMR and keep the simulation simple, only the data at memory location

4C16 is different for RAM B. The ISR is designed to start at address 3016 and end at 3C16.

What the ISR does is to store contents of registers to memory, relying on the voters to en-

sure that the correct contents are written into memory. (In the real circuit, the ISR then

restores all registers from these correct values in memory.) The Opcode F8000016 is the

RFE instruction used to tell Interrupt where the end of the ISR is. Instructions from ad-

dress 0A16 to 1016 are used to check data in registers.

100

RAM A, B and C
00 000000
01 000000
02 44014A
03 44024B
04 44034C
05 44044D
06 44054E
07 44064E
08 000000
09 000000
0A 000000
0B 44014A
0C 44024B
0D 44034C
0E 44044D
0F 44054E
10 44064E
11 000000
12 000000
13 000000
14 000000
.
.
.
.
.
.
.

.

.

.

.

.

.

.
2C

2D
2E
2F
30 45014A
31 45024B
32 45034C
33 45044D
34 45054E
35 45064F
36 000000
37 000000
38 000000
39 F80000
3A 000000
3B 000000
3C 000000
3D
3E

.

.

.

.

.

.

4A 0000AA
4B 0000BB
4C 0000CC
4D 0000DD
4E 0000EE
4F 0000FF
50

RAM B has 00011

ISR

Figure 62. Memory Pre-configurations

Figures 63, 65, and 66 display the full simulation result and some trivial signals

are not shown. There are four clocks in this design. Clock signals clk_p, clk_i, clk_r, and

clk_m are for the KDLXs, Interrupt, Reconciler, and RAMs, respectively. The KDLX

clock runs at one-half the speed of the others. Since the Interrupt does not need signals

from the Reconciler and vice versa, these two components are running at the same clock

speed. The RAMs are looking for the outputs of the Reconciler so the memory clock has

the longest setup and hold time.

101

Figure 63. Simulation of the Full Design without ESSD

The KDLXs, Interrupt and Reconciler are reset at point 1 and only rest_p for

processors is shown. When the program counter, pc_p, is 000216, the first instruction is

fetched. It is known that the instruction at point 2 should cause an error because the data

at address 4C16 is not consistent between RAMs. Tracing the simulation to point 3, the

function of the Reconciler is shown clearly here. Half of the KDLX clock cycle is fetch-

ing the instruction at the corresponding program counter and the other half cycle is read-

ing data from the memory for the first instruction. So the Reconciler actually reads the

instruction at memory address 000516 first and then reads the data at address 004A16.

This feature makes it possible to consolidate the two different architectures. As discussed

earlier, the instructions should be held until the next rising edge of the KDLX clock.

Thus the Reconciler should not block any data or make a bus high impedance on instr_ra,

instr_rb, and instr_rc.

102

Instructions at point 2 are executed one KDLX clock cycle after point 3. The data

needed for these instructions is offered at point 4. The wrong data in RAM B is sent to R3

of the second KDLX in the TMRA at this time. It is hard to see but cid_0 and cid_1 at

point 5 do report errors. The main purpose for this simulation is to show how different

components work together and realize the concept of the TMR. Therefore, the error re-

ports will be analyzed later.

Since the voters are hooked-up to the output buses of the KDLXs, it may be con-

fusing that the TMRA reports an error while it is loading data not storing. If this error is

not seen while loading, then the TMR will not be able to find it until the next time this er-

ror is stored into memory. Figure 64 is only a part of the TMR Assembly in Figure 26

and shows how input data flows.

Figure 64. Flowing Direction of the Input Data in TMRA

The flowing direction of the input data to the KDLXs is expressed clearly in Fig-

ure 64. Even though the buses on the voters are not bi-directional, the input data can still

be voted by this scheme. Therefore, the TMR can check data either on loading or storing

without waiting until the wrong data is used.

Going back to point 4 in the simulation result. An error is caught by the voter so

the err_i becomes high and triggers the ISR. At point 6, the signal sel_i switches to

00000016 which allows the Interrupt to insert one TRAP instruction and two NOPs to

TMRA. Notice that the state_i changes to 216 which is the TrapState of Interrupt. The

-"—=U. »"^

4KLl|-#

BIJFE16 ,
"^■■J

euFEie .

OBUFEie

""■—•■ I

103

program counter latched is 000816 so the TMR should jump back to this address when the

ISR is done. At point 7, the TRAP instruction is executed by the KDLX and starts the

ISR portion in Figure 62.

Figure 65. Simulation of the Full Design without ESSD (continued)

The implementation in this ISR is to store all contents of registers to memory. All

data in registers will be voted this time and any inconsistency should vanish. The wrong

data in RAM B ought to be corrected after this implementation. Normally the ISR will

not write to original data. The reason for doing this here is because this test is to prove

the ability to correct an error. Thus the same error should not appear next time when the

same instruction is executed.

The contents of R3 shows up again at point 8 in the ISR. Any error detected

while in the ISR will be ignored since this procedure is correcting an error and voters will

104

take care of other errors. The err_i flags at point 8 will be ignored again because it is

known that the data in R3 of the second processor is wrong. Signals cid_0 and cid_1 at

this point report the same error syndrome as the one at point 5. It could be explained eas-

ily since data is the only thing having a problem. If the third Opcode for ISR is different

in one of the processors, signals cid_0 and cid_1 at point 8 will have a different error

syndrome. It could be seen that Interrupt stays at the WaitState until it sees the RFE in-

struction.

Once the Interrupt detects the RFE instruction sent out from the RAM A, it starts

its BackState at point 10. The instruction buses of the Reconciler (i.e., instr_ra, instr_rb

and instr_rc) are forced to zero at point 9 when the RFE instruction is detected. The RFE

instruction can never be passed to the TMRA or it will be fetched and executed at point

12. If so, the new Jump instruction at point 10 becomes useless.

The Interrupt inserts the new Jump instruction, C8000816, one clock after point 9.

Therefore, it takes three clock cycles to have the new program counter used after

F8000016 is seen by Interrupt. The operation code from address 3A16 to 3C16 in Figure 62

will not be implemented since the Reconciler wants to clean the pipeline before the TMR

goes back to normal operation. So point 11 in the simulation is where the ISR stops. At

this time, both Reconciler and Interrupt are already back to normal states. The TMR

goes back to normal operation at point 12.

Doing exactly the same instruction set again from address 0816 to 1016 in Figure

62 proves the error in RAM B has been corrected. No error is reported and the ISR is not

triggered again at point 13 in Figure 66.

A complete ISR should store all contents of registers to memory and reload them

back to the original registers. Inconsistent data between the three processors should van-

ish. The ISR shown in Figure 62 is not complete in order to keep the simulation simple.

Generally speaking, the ISR should not overwrite the original data. A temporary memory

location needs to be specified for storing and reloading purposes in the ISR. The simula-

tion in this design of overwriting the original data just proves the function of the error

correction.

105

Figure 66. Simulation of the Full Design without ESSD (continued)

C. ERROR ANALYSIS

The analysis of the error in this simulation is quite easy since the data portion is

the only part that needs to be checked. Figure 67 shows the way to check the error.

At point 5 in the simulation, the cid_1 is 006E80000000016 and the cid_0 is all

zero. A zoom-in on point 5 is shown in Appendix A, section K. It can be quickly identi-

fied as an error from the second processor. Comparing the inconsistent portion of the

data with cid data shows that they have the same pattern which demenstrates that the er-

ror report in this design is correct.

106

Figure 67. Error Analysis for the Full Design

D. CHAPTER SUMMARY

It is exciting to see that this full design works in simulation. The three KDLX

processors work in parallel and the design functions as desired. Confusion on how Inter-

rupt or Reconciler works should have been cleared up by the material in this chapter.

The program counter is not latched properly in Figure 59, but works perfectly in the full

design. The timing issues of the simulation arise again. Changing the way to latch the

program counter in the Interrupt to make it work in Figure 59 may cause the simulation

of the full design to fail.

The last component for a complete TMR design is the Error Syndrome Storage

Device (ESSD). This is a device used to store error syndromes for future analysis. The

full design with ESSD will be introduced in the next chapter.

lk\ 13 i nan
t'onwl Diilii OOCC 0000 (jyyo uoo iioo
Wrotm Diitn 001 1 0000 0000 0001 000!
Error Rfpiiit oooooocio iini 1101

dam(l5:0)

inconsistent
portion

/^ ■\

Bh ill 44 4; 4: 41 ^ —i^ '" '"J ^ -.4 17 ".j IP

cid 1
cid 0

II II

11 . - II

II ^1 1 II 1 1) II

W
11 II

11 II

u
0

u u
0 0 ii i> ii II II II 1) n

cidl

in Jicx

ou b

1

L

^
\

UOUOOUOO

inconsistent portion the Second Processor

107

IX. THE FULL DESIGN WITH ESSD

After designing and simulating different components, the TMR design is almost

completed. In the previous chapter, it has been shown that the voters are able to report

and locate an error when it occurs. Errors on different buses will be reported by

cid_1(50:0), cid_0(50:0), err(50:0), and v_err(50:0). The pattern generated for an error

on these buses is called the error syndrome.

A space system like CFTP will leave the earth for a long time. It is desired to

have some kind of device to collect the error syndrome whenever an error occurs. The

error syndrome can be used to analyze the health of the system or help understand the

space environment for a system on orbit. If the same error is generated several times, it

can be assumed that a certain device is defective or deviant. The solution may be to re-

program the FPGA or reset the system. The ESSD is the device designed to collect error

syndromes. In order to be able to download this data after a period of time, the ESSD has

to store the error syndromes to memory.

A. THE FUNCTION OF ESSD

Simulation for the full design without ESSD was introduced in the previous chap-

ter. Therefore, the functions of ESSD are to store the error syndromes and where they are

located in the system. The ESSD is designed pretty much following the concept of build-

ing the Interrupt. It is a state machine coded in VHDL and runs in double speed, that is

in synchronization with the memory clock. It has to run in double speed in order to work

with errors generated in either half of the KDLX clock cycle. Because the ISR will be

triggered when an error occurs, choices for where ESSD is to be implemented are before,

after or sometime within the ISR.

Halting normal operation is the last choice since the ISR is already designed to do

that. It is reasonable not to interrupt the normal operation unless absolutely necessary.

Too many interruptions may decrease the performance of a system or cause the program

to lose track of the instruction sequence. Due to these reasons, the ESSD is implemented

in the ISR instead of triggering another interrupt routine somewhere in normal operation.

108

To minimize the impact on ISR, the ESSD is designed to start right before the first

instruction in ISR begins. The two NOPs following the TRAP instruction are a good

starting point for ESSD since the pipeline is cleaned and no useful instruction is execut-

ing. Consolidating all of the concepts above, the state machine for ESSD is constructed

as Figure 68 and its VHDL code is in Appendix C, section D.

State 0

State0_A

1

State0_B

2

LatchState_A

3

LatchState_B

4 NopState0_A

5 NopState0_B

6 NopState1_A

10

StoreState0_B

11

StoreState0_C

15

16

StoreState_addr

StoreState_pc

17BackState

err = 0

err = 1reset_i = 1

reset_i = 0

7 NopState1_B

8 StallState

14StoreState1_C

13StoreState1_B

12StoreState1_A 9 StoreState0_A

Figure 68. State Machine of ESSD

The first eight states are very similar to the states in Interrupt. This is because the

ESSD has to wait until two NOPs are inserted. The LatchState_A latches the program

counter, the data address, and the 51-bit data on the cid_0 and cid_1 buses. The Stall-

109

State stalls KDLX in order to start storing the latched error syndromes. The ESSD stores

data to memory as a stack which starts at the bottom and runs to the top. For simplicity

and explanation purpose, we use address 005916 as the starting point and store data from

the least significant bit to the most significant. This function is illustrated in Figure 69.

Memory
00
01
02
.
.
.
.

.

.

.

.
4F
50
51
52
53
54
55
56
57

59
58

cid_0(23:0)

cid_0(47:24)

21 0's+cid_0(50:48)

cid_1(23:0)

cid_1(47:24)

21 0's+cid_1(50:48)

data address

program counter

Figure 69. Function of ESSD Storing

Each data word in memory is 24-bits wide so a 51-bit data syndrome takes three

clock cycles to store. The most significant three bits of cid_0 and cid_1 are stored with

21 zeros ahead. A counter is used internal to ESSD to track the memory locations. The

next error syndrome will start at address 5116. States from StoreState0_A to Store-

State_pc implement the actions described here. During this period, all of the processors

are stalled and the memory is controlled by ESSD. The last state is the BackState which

releases the processors to start the ISR.

110

The ESSD runs at twice the speed of the TMRA but states after the NopState1_B

are not doubled as the other state machines do. Because the ESSD and the memory are

both in double speed, one memory access can occur in every ESSD state. Therefore,

states between StoreState0_A and BackState do not need to be duplicated. The Interrupt

and Reconciler stop functioning when KDLX is stalled. The schematic symbol of ESSD

is shown in Figure 70.

Figure 70. Schematic Symbol of ESSD

Input signals at the left side are used for latching data from the buses. Output sig-

nals, sel_addr(15:0), sel_s(23:0), and sel_wr are used to switch muxes in order to insert

data on addr_s(15:0), ess(23:0), and wr_s, respectively. The stall_s goes low to stall

KDLX when error syndromes are ready to be stored.

B. THE FULL DESIGN WITH ESSD

1. Schematic

The schematic for the full design with ESSD is shown in Figure 71. Comparing

with Figure 61, the ESSD is added at the bottom right and all incoming or outgoing buses

are intercepted with muxes. The ESSD obviously takes over RAMs once it starts to store

error syndromes. Three muxes at the input side of RAMs are used to insert the data ad-

dress, data and write signal. The other three muxes on the output buses of RAMs are used

to intercept any unrelated data to Reconciler while storing the error syndromes.

Two big latches called latch51 are sitting on the cid_0 and cid_1 buses ahead of

the ESSD. This part is coded in VHDL and is necessary for this design. It latches data

when err is high and keeps the latched data until the next error is detected. Therefore, the

essd
clk_s addr_s(15:0)

reset_s sel_addr(15:0)

err ess(23:D)

addr_in(15:0) sel_s(23:0)

pc_in(15:0) wr_s

cid0_in{50:0) sel_wr

cid1Jn(50:0) state_s(4:0)

stall s

111

ESSD can capture cid_0 and cid_1 whenever it wants because this data is available and

stable on the bus. More explanation of how it functions and why it is vital in this design

will be described in the simulation discussion.

112

Figure 71. Schematic of the Full Design with ESSD

I

a ■

n
11

»yi
11

ii luiioi

H

O 2UJ 2 V 2 ff ff

Ih^ 9

i i

n
H.I

[1

 m
I! 1(1 I IS I

LJ
I ■ 1. 1 I.

ffi[>ii?

113

2. Simulation

Fewer signals are monitored here than with the full design in the previous chapter,

since the test bench is almost identical except for a few extra instructions for checking

stored error syndromes in memory. Functions of the TMRA, Interrupt and Reconciler in

the full design without ESSD have been described so this simulation just shows how the

ESSD works. Important signals and all buses on the ESSD are monitored in the simula-

tion shown in Figures 72 and 74. This simulation ignores most identical parts introduced

in the previous chapter. Only the important functions of the ESSD are shown for

explanation.

Figure 72. Simulation of the Full Design with ESSD

In Figure 72, five clocks are listed. The Reconciler, Interrupt and ESSD all work

in parallel so the time constraints for clk_ir and clk_s are identical. The new clock, clk_l,

114

for latch51 needs to run at double speed, and it has to be stable before the ESSD is ready.

Because of this, the latch51 has less setup and hold time comparing with the ESSD.

As before, the error is caught at point 1 and cid_1, cid_0 indicate where the error

is. One needs to know that cid_1 and cid_0 are output data of latch51. Unlike the simu-

lation in previous chapter, data on cid_1 and cid_0 show up at point 2 and are latched un-

til the next error is reported in normal operation. The ESSD, therefore, is able to store

these two data when state_s is 0216.

The most important reason for using latch51 is to make the data stable on the bus.

The zoom in at point 5 in Figure 63 is shown in Figure 73. The data of cid_1 and cid_0 is

available after the memory clock cycle and becomes unstable before the next rising edge

of the Interrupt or Reconciler clock cycle. Because the ESSD is running exactly the same

clock speed as the Interrupt and Reconciler, both cid_1 and cid_0 have to be available

until the next rising edge of the Interrupt (or Reconciler) clock in order to be latched cor-

rectly for the ESSD. Due to this reason, the latch51 is designed to keep the data stable

and the ESSD thus can latch it at any state before storing the error syndromes.

Figure 73. Detail Timing at point 5 in previous simulation

Back to Figure 72, point 3 is the first instruction fetched in the ISR. At the same

time the KDLX is fetching this instruction, the ESSD triggers stall_s at point 4 to stall the

processors. In the next clock cycle, the muxes are switched to zeros and 005916 appears

on the address bus to the RAMs.

115

Figure 74. Simulation of the Full Design with ESSD (continued)

Following the algorithm explained in Figure 69, the bus ess at point 5 proves this

function works. Once the ESSD finishes at point 6, it gives all of the buses back and re-

leases the processors. The first instruction of the ISR starts in the next clock cycle.

Extra instructions in the RAMs are for loading error syndromes stored in memory

back to the registers for checking purposes. These instructions start at point 7 and the

output data at point 8 proves that all values are stored correctly.

C. CHAPTER SUMMARY

All components for a complete design have been introduced. The reason for not

discussing the ESSD until this chapter is to simplify the simulation. There were too many

things that needed to be explained in the simulation result if the ESSD is not described

separately. This would make the whole simulation look complicated and may not em-

phasize the importance of the ISR. Introducing the ESSD separately means that the func-

tions of the Reconciler, Interrupt, and ESSD are shown clearly in all simulations.

n_n_r

"lOOQO

OOfttWWOOOOOO

0000000000000

moonlmmt |»o« |oc»«[««» (i

rj^^ ^mm l™» l4WJ4fl-

/tntbendVdk.l ,

,t«tt<eotlVtJk " ,

■ttai-otwdk^s p u u u 4J U 1-1 1_I

jteslbench/oc m ;>MIJ

/intbrnclVatltt m |o03Q

/tfs«b«ndi/*d*.5 j (005& loOSi loPM !o(ft3'loOS2 ^

/MibtnclVciill.in

/tolbenclVtidl) in

/WMndVdoiK.'M

/IntbcncVikMt mc

fl»PtmnOi/»n

/MtbendVflal.*

/lBtbendV|)n>g_p

/mbnKti/w4 MlOr

rinttwndi/iel.E

/tMllwndVttito-r

/kltbOKh/ltate I

AeMMxiiAiw I

AMtiNndVK_sul

OOCOQOJMM JoBm]S

qOOOW

j^D?

I2^J2

HK'r

:]m^
i5i3L Heini—ti

Jge_]|2L

<l>> II

■T«b02«C

i«:

Ii2_

point 5

1' itp i»

point 6

~1(X]14

■ lwl»ll4401H~

■ joawfT'WOiSJ

■ jwuw'T'WOiW

point 7

116

Not a conceptual design, this full design was simulated and checked. Design of

these components can be improved and more information is needed for a better perform-

ance of the TMR system. These topics for follow-on research will be discussed in the

next chapter.

117

X. CONCLUSIONS AND FOLLOW-ON RESEARCH

This thesis has described the design of a premiere TMR design on an FPGA for

the CFTP. Major components have been defined in previous theses but most of them had

to be redesigned due to more understanding of the KDLX processor. Each component

was simulated to prove its function. Some timing issues were discussed when different

components were connected with each other. The full design has proved the ability to de-

tect and correct an SEU in simulation as well.

A. OVERVIEW

The TMR Assembly consists of three KDLX processors and voters in order to de-

tect and correct errors. A majority voter can only handle one error per time. Since the

TMR Assembly has several voters in it, it is able to report errors on different signals si-

multaneously. For example, cid_1 and cid_0 buses of the TMRA can identify errors on

the program counter and data at the same time. The processor causing errors on the pro-

gram counter may not be the same one that generates errors on data.

In order to coordinate memory access, the Reconciler is built to consolidate the

Harvard and Von Neumann architectures. It runs twice as fast as the KDLX clock cycle

and has instruction memory access first followed by the data memory access second.

This component purely implements read and write access with memory and does not re-

late directly to error detection or correction. The Interrupt provides an ISR to correct any

inconsistency in registers between the three processors. This unit is triggered when an er-

ror is found by the TMRA. If an error is caused somewhere on the bus but not inside reg-

isters, the ISR will still be triggered but no error will be found. An error syndrome re-

cords the program counter, the memory address, and any inconsistent bits on data, ad-

dress, program counter, read, write and program read in cid buses. This information is

latched in ESSD and will be stored to memory during the ISR. Analyzing error syn-

dromes can help a designer to correct or fix the current design.

118

B. CONCLUSIONS

A simple flow chart in Figure 75 illustrates the overall procedure to correct an er-

ror in TMR. The role of each component in the full design can be understood clearly.

The Interrupt is generated for error correction purpose only and the ESSD is for storing

error syndromes only.

TMRA

Interrupt

Normal
Operation

1. Insert TRAP and two NOPs
2. Latch program counter
3. ISR starts

ESSD

1. Latch error syndromes
2. Wait for the end of two
 NOPs

Error occurs

ESSD

1. Intercept ISR and Stall KDLXs
2. Start error syndromes
 storage

Interrupt

1. Retrieve ISR
2. Store and Reload all
 contents of registers

ESSD

Release KDLXs and all
buses connected to
memory

Interrupt

1. See RFE instruction
2. Insert new Jump instruction

TMRA

1. Program counter loaded
2. ISR ends

Figure 75. Flowchart of Error Correction for TMR design

A reprogrammable space device such as CFTP has a great potential for the future.

The TMR on an FPGA functions as a SOC which saves space on board and offers the

flexibility of modification. Utilizing the TMR design with some other features makes the

CFTP act as an error-free device. Its powerful feature of reconfigurability widens its us-

age in missions and lets the state-of-the-art technology be applied to many applications.

C. FOLLOW-ON RESEARCH

A premiere functioning TMR design is complete. This circuit was simulated and

proved on software. It is possible to instantiate this design onto a development board to

verify its function. Before doing that, some modifications need to be done. Performance

of each component can be improved as well. Furthermore, using a faster soft-core proc-

essor to speed up the overall performance of the TMR is inevitable.

119

1. Modification on Current Design

Most components like Reconciler, Interrupt and ESSD are essentially state ma-

chines coded in VHDL. It is possible to have these three in one big state machine since

they all run in double speed. One needs to have a clear mind on the different functions of

the different components in order to do this. Debugging this kind of big state machine

needs to be carefully done since any modification on one state may affect functions on

other states. On the other hand, there are several different ways to code a component.

Other methodologies sometimes are better than using a state machine depending on

characteristics of these different components.

A voter error is not considered in this thesis due to time constraints. This kind of

error does not need to trigger the ISR. When a voter votes incorrectly, the output is not

trustful. The data can be either discarded or re-voted based on the situation. The ESSD

may need to be revised so as not to save all error syndromes in order to save memory

space.

The memory selected for the simulation is based on the availability of the ISE

software. If possible, a real Von Neumann architecture memory should be built. Modifi-

cations on the TMRA and Reconciler will be necessary at that time. The real environment

on the development board must be considered before these modifications. This avoids

duplicate work and makes it possible to compare the simulation result on software with

the one on hardware.

An SEU can occur anywhere in the TMR design. More issues need to be solved

if this error occurs on the Reconciler, Interrupt or ESSD. Increasing the reliability also

increases the probability of having an SEU. The trade-off between these conditions

needs more discussion.

2. Faster Processors

Several requirements are considered when searching for a faster processor. First,

The new processor has to be faster than the current 16-bit RISC KDLX. Second, it has to

be a soft-core processor. Third, it needs to be compatible with Xilinx Virtex XCV800

HQ240 FPGA selected for the CFTP. Other features such as using cache or Harvard ar-

chitecture can be reconsidered.

120

Many soft-core processors nowadays use cache to improve their performance

even though it is possible to have an SEU in it. Detecting and correcting an SEU in a

cache cannot use the same method as with the registers. The contents of the caches need

to be reloaded by some method. Study of the SEE on a Pentium®5 III processor proves

that utilizing cache in different ways can change the testing result dramatically [12].

Therefore, it is possible to take advantage of cache without increasing the probability of

having an error, and consideration of future processors should include ones with cache.

Using a Von Neumann architecture processor would simplify the TMR design.

The Reconciler can be removed and less control in TMRA are needed for the data bus.

Table 21 lists some candidate commercial processors that are currently available.

Commercial Processors
Company Processor Architecture Features

Xilinx MicroBlaze 32-bit RISC 1. No cache
2. Harvard bus

ARM ARM7TDML 32-bit RISC
1. Most have cache
2. Von Neumann bus
3. Hard core

MIPS MIPS64
5Kc(5Kf) 64-bit RISC

1. Programmable cache 0-64KB
2. Co-processor interface
3. Floating-point pipline
4. Hard core

MIPS MIPS64 20Kc 64-bit RISC
1. 32KBcaches
2. Superscalar
3. Hard core

Sandcraft SR71010B 64-bit RISC 1. MIPS64 based
2. L1 32KB cache

Tensilica Xtensa 32-bit RISC 1. Local data and instruction caches

Altera Nios 32-bit RISC
1. Instruction master is a 16-bit wide, la-

tency-aware Avalon bus master
2. Configurable cache size

ARC ARCtangent-A4 32-bit RISC

1. Processor can be configured with Har-
vard bus architecture (separate instruc-
tion/data buses) or a von Neumann bus
architecture (unified instruction/data
buses)

2. User-configurable instruction and data
cache

Table 21. Commercial Soft-Core Processors

5 Pentium is a registered trademark of Intel Corporation.

121

Some processors have configurable cache which gives the user some flexibility.

The advantage and disadvantage between a soft-core and a hard-core processor has been

described in Chapter I so no hard-core processors are considered. Candidates for the

TMR are MicroBlaze, SR71010B, Xtensa, Nios, and ARCtangent-A4.

Commercial processors are always expensive because of the proprietary issues.

Sometimes these processors come with their own development kit which makes imple-

mentation on other software impossible. Part of the design of a commercial processor is

sometimes protected by the company and not accessible for the user. Even though revis-

ing a processor is not always required, studying source code is a good and fast way to un-

derstand the processor itself. On the other hand, information of these commercial proces-

sors is limited since only the data sheet on the Internet can be found most of the time.

Sometimes people share their invention or modification of cores with the public.

These cores may or may not be fully tested and usually the designer is looking for other

people to test it. These cores are called OpenCores. OpenCores are free and can be eas-

ily downloaded from the Internet. The disadvantage of using OpenCores is that they are

hard to use. Some designers do not describe their design in detail and development tools

vary from different designers. People post their questions on the website and hope some-

one will answer it. Therefore, there is no customer support like the commercial proces-

sors. Some Opencores are collected in Table 22.

Some information is not complete due to the lack of description by designers or

other users. These cores do not have many restrictions and can be modified if desired.

Based on the information found, the SPARC and RISC R1000 are very common proces-

sors. The RISC R1000 has been tested and successfully ran a video image program.

Many devices are also compatible with this processor. The RISC R1200 is almost an

identical processor with R1000 except for the cache inside. The Yellow Star which is ac-

tually the MIPS32 R3000 processor is known as a very powerful processor. It has been

tested by many users as well.

122

OpenCores
Architecture Name Features

SPARC V8 LEON VHDL
32 bit

1. AMBA AHB and APB on-chip buses
2. Data cache is a direct-mapped cache configurable to

1-64 kbyte

SPARC V7 ERC32
32 bit

1. A radiation-tolerant processor developed for space
applications

2. Two platforms are supported: SPARC Solaris-2.5.1
(or higher),and x86 linux (libc5)

3. VHDL model runs on Unix systems

RISC OpenRisc R1000
32 bit

1. Tested on Xess XSV800 and Flextronics Semicon-
ductor development boards

RISC OpenRisc R1200
32 bit

1. Tested on Xess XSV800 and Flextronics Semicon-
ductor development boards

2. cache

RISC
Yellow Star

(MIPS32 R3000)
32 bit

1. Capable of executing 32bit instructions based on the
MIPS R3000 microprocessor instruction set and has
been tested running large blocks of compiled C code.

2. Fully functional and compatible interrupt system. Can
handle all exceptions cleanly and correctly.

3. On-chip cache control and Memory Management Unit

RISC Risc 16f84
1. The "risc16f84_clk2x.v" core has been coded com-

pletely, synthesized and tested for correct operation
(and debugged!) inside a Xilinx XC2S200 FPGA

RISC Plasma

1. Support interrupts and all MIPS I(TM) user mode in-
structions except unaligned load and store operations
(which are patented) and exceptions which can be eas-
ily avoided.

2. Tested on an Altera FPGA running at 16.5 MHz (syn-
thesized for 29.8 MHz)

3. Currently running on an Altera EP20K200EFC484-
2X FPGA and a Xilinx FPGA

Table 22. OpenCores

These OpenCores are tested and proved with certain FPGAs. In order to use these

processors in the TMR design, more study and research on source codes are required.

Finally, they will need to be tested and simulated on the ISE software before any design

work related to the TMR.

123

APPENDIX A: SCHEMATICS

Appendix A contains all schematics, test benches and simulation results of the

components in this thesis. Simple schematic symbols are introduced as figures and are

not included here. Features and settings of each component and test bench are briefed as

well. The long test bench is chopped into pieces and only the important parts are shown.

Sometimes a different expression is used in order to explain how a component will be

tested.

The simulation result is always shown completely. Important parts that need to be

explained are duplicated or modified in contents. All values used in the test bench and

the simulation result are hexadecimal and R0 is always zero.

A. 24-BIT MEMORY

1. Schematic

This memory is a RAM. It is triggered at the rising clock edge. Both write en-

able (i.e., WE) and memory enable (i.e., EN) pins are active low. Default value of this

memory is zero.

2. Test Bench

This test bench was originally in a single row. It is cut into two rows in order to

fit the paper size. The vertical line at time 2100 ns is the stop point of the simulation.

Clock high time and low time is 50 ns. Input setup time and output valid delay is 10 ns.

I addr(7:0)^
data in(23:0);

enable m/-

rdk>-

ADDR(7:0) DOUT(23:0)
DIN(23:0)
WE
EN

data out(23i0)>

124

3. Simulation Result

B. KDLX WITHOUT MEMORY

1. Schematic

2. Test Bench

The data bus is high impedance. Two values are offered at clock 5 and 6 for

KDLX to load into registers. Clock high time and low time is 50 ns. Input setup time

and output valid delay is 10 ns.

[dk>-

ins(23:0)>-

dix

; instr(23:0)

prog_rd

rd

wr

dr_int(15:0)

pc(15:0)

data(15:0)

pro rd>

rd p>

H addr(15:0)>

H PC p(15:0)>

-<data p(15:0)>

125

3. Simulation Result

C. KDLX WITH MEMORIES

1. Schematic

The instruction memory at the left side is a ROM. The data memory at the right

side is a RAM. Data memory is pre-configured with 000316. Both memories are trig-

gered at the rising clock edge.

126

127

2. Test Bench of Instruction Set

For the processor, clock high time and low time is 50 ns; input setup time and out-

put valid delay is 10 ns. For memories, all timing settings are half of the processor clock.

The bi-directional bus is high impedance.

Nothing special is needed in the test bench thus only the first and last parts are

shown here. The KDLX is reset and memories are enabled at time 200 ns. Since the in-

struction is configurable, the test benches for all instructions sets are the same.

3. Tables and Simulation Results of Instruction Sets

a. Implementation Table of Instruction Set 1

Instruction (operation symbol) Opcode Expected Value
LW R1←Mem(R0+03) 440103
SW R1→Mem(R0+08) 450108 0003
LW R2←Mem(R0+04) 440204
SW R2→Mem(R0+09) 450209 0003
ADD R1+R2→R3 011320
SW R3→Mem(R0+0D) 45030D 0006
ADDI R1+ext(F9)→R4 4114F9
SW R4→Mem(R0+0E) 45040E FFFC
ADDUI R1+(0A) →R5 21150A
SW R5→Mem(R0+0F) 45050F 000D
AND R1•R3→R6 091630
SW R6→Mem(R0+10) 450610 0002
ANDI R4•(FD)→R7 2947FD
SW R7→Mem(R0+11) 450711 00FC

128

Instruction (operation symbol) Opcode Expected Value
LHI R8←FF||(0)8 0808FF
SW R8→Mem(R0+12) 450812 FF00
OR R1+R3→R9 0A1930
SW R9→Mem(R0+13) 450913 0007
ORI R1+(F0)→R10 2A1AF0
SW R10→Mem(R0+14) 450A14 00F3
SEQ R1=R2→R11=1 181B20
SW R11→Mem(R0+15) 450B15 0001
SEQ R1≠R3→R12=0 181C30
SW R12→Mem(R0+16) 450C16 0000
SEQI R1=(0003)→R13=1 581D03
SW R13→Mem(R0+17) 450D17 0001
SEQI R1≠(0004)→R14=0 581E04
SW R14→Mem(R0+18) 450E18 0000
SLL R4←R2=(0003)→R15 114F20
SW R15→Mem(R0+19) 450F19 FFE0
SLLI R4←(0005)→R3 514305
SW R3→Mem(R0+1A) 45031A FF80
SRA R4→R1=(0003)→R5 134510
SW R5→Mem(R0+1B) 45051B FFFF
SRLI R4→(0003)→R6 524603
SW R6→Mem(R0+1C) 45061C 1FFF
SUBI R8−ext(7B)→R7 43877B
SW R7→Mem(R0+1D) 45071D FE85
XOR R9⊕R10→R11 0B9BA0
SW R11→Mem(R0+1E) 450B1E 00F4

129

b. Simulation Result of Instruction Set 1

130

131

c. Tables of Registers and Memories in Simulation 1

Instruction Mem
0000

01 440103
02 440204
03 000000
04 000000
05 450108
06 450209
07 000000
08 011320
09 4114F9
0A 21150A
0B 000000
0C 091630
0D 45030D
0E 45040E
0F 45050F
10 450610
11 2947FD
12 0808FF
13 0A1930
14 2A1AF0
15 450711
16 450812
17 450913
18 450A14
19 181B20
1A 181C30
1B 581D03
1C 581E04
1D 450B15
1E 450C16
1F 450D17
20 450E18
21 114F20
22 514305
23 134510
24 524603
25 450F19
26 45031A
27 45051B

01 0003
02 0003
03 0006
04 FFFC
05 000D
06 0002
07 00FC
08 FF00
09 0007
10 00F3
11 0001
12 0000
13 0001
14 0000
15 FFE0

28 45061C
29 43877B
2A 0B9BA0

Data Mem
00
01
02
03
04
05
06
07
08 0003
09 0003
0A
0B
0C
0D 0006
0E FFFC
0F 000D
10 0002
11 00FC
12 FF00
13 0007
14 00F3
15 0001
16 0000
17 0001
18 0000
19 FFE0
1A FF80
1B FFFF
1C 1FFFF
1D FE85
1E 00F4
1F
20
21
22
23
24
25
26
27
28
29
2A

Register

FF80

FFFF
1FFF
FE85

00F4

2C 000000

2D 45071D
2E 450B1E
2F 000000
30 000000
31 000000
32 450101
33 450201
34 450301
35 450401
36 450501
37 450601
38 450701
39 450801
3A 450901
3B 450A01
3C 450B01
3D 450C01
3E 450D01
3F 450E01
40 450F01
41 000000
42 000000
43 000000
44 44010D
45 44020E
46 44030F
47 440410
48 440511
49 440612
4A 440713
4B 440814
4C 440915
4D 440A16
4E 440B17
4F 440C18
50 440D19
51 440E1A
52 440F1B
53 44011C
54 44021D
55 44031E
56 000000

2B 000000
57 000000

59 000000
58 000000

132

d. Implementation Table of Instruction Set 2

Instruction (pseudo code) Opcode Expected Value
SGE R1>R3→R13=1 191D30
SW R13→Mem(R0+1F) 450D1F 0001
SGE R15>R14→R9=0 19F9E0
SW R9→Mem(R0+20) 450920 0000
SGEI R15≥ext(E8)→R10=0 59FAE8
SW R10→Mem(R0+21) 450A21 0000
SGEI R15≥ext(E0) →R11=1 59FBE0
SW R11→Mem(R0+22) 450B22 0001
SGT R4>R15→R6=1 1A46F0
SW R6→Mem(R0+23) 450623 0001
SGT R15>R4→R7=0 1AF740
SW R7→Mem(R0+24) 450724 0000
SGTI R15>ext(FF)→R8=0 5AF8FF
SW R8→Mem(R0+25) 450825 0000
SGTI R15>ext(87)→R9=1 5AF987
SW R9→Mem(R0+26) 450926 0001
SLE R1=R2→R10=1 1B1A20
SW R10→Mem(R0+27) 450A27 0001
SLE R1<R13→R11=0 1B1BD0
SW R11→Mem(R0+28) 450B28 0000
SLEI R1≤ext(03)→R12=1 5B1C03
SW R12→Mem(R0+29) 450C29 0001
SLEI R1≤ext(02)→R13=0 5B1D02
SW R13→Mem(R0+2A) 450D2A 0000
SLT R15<R1→R6=1 1CF610
SW R6→Mem(R0+01) 450601 0001
SLT R1<R15→R7=0 1C16F0
SW R7→Mem(R0+02) 450702 0000
SLTI R1<ext(0D)→R8=1 5C180D
SW R8→Mem(R0+03) 450803 0001
SLTI R1<ext(01)→R9=0 5C1901
SW R9→Mem(R0+04) 450904 0000
SNE R1≠R2→R10=0 1D1A20
SW R10→Mem(R0+05) 450A05 0000
SNE R1≠R15→R11=1 1D1BF0
SW R11→Mem(R0+06) 450B06 0001
SNEI R1≠ext(03)→R12=1 581C03
SW R12→Mem(R0+07) 450C07 0001
SNEI R15≠ext(E1)→R13=0 58FDE1
SW R13→Mem(R0+08) 450D08 0000
SRAI R3→(0006)→R6 533606

133

Instruction (pseudo code) Opcode Expected Value
SW R6→Mem(R0+09) 450609 FFFE
SRL R3→R2=(0003)→R7 123720
SW R7→Mem(R0+0A) 45070A 1FF0
XORI R15⊕(8A)→R8 2BF88A
SW R8→Mem(R0+0B) 45080B FF6A
SUBUI R3−(80)→R9 233980
SW R9→Mem(R0+0C) 45090C FF00
SUB R1−R3→R14 031E30
SW R14→Mem(R0+0D) 450E0D 0083

e. Simulation Result of Instruction Set 2

134

135

f. Tables of Registers and Memories in Simulation 2

Instruction Mem
00
01 410103
02 410203
03 0803FF
04 0804FF
05 0805FF
06 08061F
07 410380
08 4104FC
09 4105FF
0A 2166FF
0B 0807FE
0C 0808FF
0D 080FFF
0E 210AF3
0F 217785
10 210BF4
11 410907
12 410D01
13 410E00
14 410C00
15 410FE0
16 000000
17 000000
18 450100
19 450200
1A 450300
1B 450400
1C 450500
1D 450600
1E 450700
1F 450800
20 450900
21 450A00
22 450B00
23 450C00
24 450D00
25 450E00
26 450F00
27 000000
28 000000
29 000000
2A 191D30

Data Mem
00
01 0001
02 0000
03 0001
04 0000
05 0000
06 0001
07 0001
08 0000
09 FFFE
0A 1FF0
0B FF6A
0C FF00
0D 0083
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F 0001
20 0000
21 0000
22 0001
23 0001
24 0000
25 0000
26 0001
27 0001
28 0000
29 0001
2A 0000

2C 59FAE8

30 450A21
31 450B22
32 1A46F0
33 1AF740
34 5AF8FF
35 5AF987
36 450623
37 450724
38 450825
39 450926
3A 1B1A20
3B 1B1BD0
3C 5B1C03
3D 5B1D02
3E 450A27
3F 450B28
40 450C29
41 450D2A
42 1CF610
43 1C17F0
44 5C180D
45 5C1901
46 450601
47 450702
48 450803
49 450904
4A 1D1A20
4B 1D1BF0
4C 581C03
4D 58FDE1
4E 450A05
4F 450B06
50 450C07
51 450D08
52 533603
53 123720
54 2BF88A
55 233980
56 031E30

2B 19F9E0

57 450609

59 45080B
58 45070A

5A 45090C
5B 450E0D
5C 000000
5D 000000
5E 000000

2D 59FBE0
2E 450D1F
2F 450920 5F 000000

00
01 0003
02 0003
03 FF80
04 FFFC
05 FFFF
06 1FFF
07 FE85
08 FF00
09 0007
10 00F3
11 00F4
12 0000
13 0001
14 0000
15 FFE0

Register

0003
0003
FF80
FFFC
FFFF
FFFE
1FF0
FF6A
FF00
0000
0001
0001
0000
0083
FFE0

136

g. Implementation Table of Instruction Set 3

Instruction (pseudo code) Opcode Expected Value
LW R1←Mem(R0+03) 410103
LW R2←Mem(R0+04) 410204
LW R3←Mem(R0+00) 410300
LW R4←Mem(R0+06) 410406
BNEZ R1≠0→Prog_Addr←(05)+1+ext(04) C01004
 Note: PC=05 and (05)+1+ext(04)=0A
BEQZ R3=0→Prog_Addr←(0A)+1+ext(04) C13004
 Note: PC=0A and (0A)+1+ext(04)=0F
ADDI R0+ext(25)→R5 410525
J (0020)→Prog_Addr C80020
JAL (0014)→Prog_Addr ; (23)→R15 E80014
 Note:(23) is return address
ADDI R0+ext(8A)→R6 41068A
ADDI R0+ext(40)→R7 410740
ADD R1+R2→R8 011820
ADD R1+R4→R9 011940
SW R15→Mem(R0+01) 450F01 0023
JALR R5→Prog_Addr ; (1D)→R15 685000
 Noter:(1D) is return address
J (0030)→Prog_Addr C80030
SW R5→Mem(R0+02) 450502 0025
SW R6→Mem(R0+03) 450603 FF8A
SW R7→Mem(R0+04) 450704 0040
SW R8→Mem(R0+05) 450805 0007
SW R9→Mem(R0+06) 450906 0009
SW R15→Mem(R0+07) 450F07 001D
JR R7→Prog_Addr 487000
SW R2→Mem(R0+08) 450208 0004

137

h. Simulation Result of Instruction Set 3

138

i. Tables of Registers and Memories in Simulation 3

R e g is te rIn s t ru c t io n M e m
0 00 0

0 1 4 1 0 1 0 3
0 2 4 1 0 2 0 4
0 3 4 1 0 3 0 0
0 4 4 1 0 4 0 6
0 5 C 0 1 0 0 4
0 6 0 0 0 0 0 0
0 7 0 0 0 0 0 0
0 8
0 9
0 A C 1 3 0 0 4
0 B 4 1 0 5 2 5
0 C 0 0 0 0 0 0
0 D
0 E
0 F C 8 0 0 2 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 2
1 3
1 4 0 1 1 8 2 0
1 5 0 1 1 9 4 0
1 6 4 5 0 F 0 1
1 7 0 0 0 0 0 0
1 8 0 0 0 0 0 0
1 9 0 0 0 0 0 0
1 A 6 8 5 0 0 0
1 B 0 0 0 0 0 0
1 C 0 0 0 0 0 0
1 D
1 E
1 F
2 0 E 8 0 0 1 4
2 1 4 1 0 6 8 A
2 2 4 1 0 7 4 0
2 3
2 4
2 5 C 8 0 0 3 0
2 6 0 0 0 0 0 0
2 7 0 0 0 0 0 0

0 1 0 0 0 3
0 2 0 0 0 4
0 3 0 0 0 0
0 4 0 0 0 6
0 5 0 0 2 5
0 6 F F 8 A
0 7 0 0 4 0
0 8 0 0 0 7
0 9 0 0 0 9
1 0
1 1
1 2
1 3
1 4
1 5

2 8
2 9
2 A

D a ta M e m
0 0
0 1 0 0 2 3
0 2 0 0 2 5
0 3 F F 8 A
0 4 0 0 4 0
0 5 0 0 0 7
0 6 0 0 0 9
0 7 0 0 1 D
0 8 0 0 0 4
0 9
0 A
0 B
0 C
0 D
0 E
0 F
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 A
1 B
1 C
1 D
1 E
1 F
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 A

3 0 4 5 0 5 0 2
3 1 4 5 0 6 0 3
3 2 4 5 0 7 0 4
3 3 4 5 0 8 0 5
3 4 4 5 0 9 0 6
3 5 4 5 0 F 0 7
3 6 4 8 7 0 0 0
3 7 0 0 0 0 0 0
3 8 0 0 0 0 0 0
3 9

4 0 4 5 0 2 0 8

…
.

4 1 0 0 0 0 0 0
4 2 0 0 0 0 0 0
4 3 0 0 0 0 0 0

2 3 R 1 5
1 D R 1 5

139

j. Implementation Table of Instruction Set 4

Instruction (operation symbol) Opcode Expected Value
ADDI R0+ext(04)→R1 410104
ADDI R0+ext(07)→R2 410207
TRAP (0020)→Prog_Addr ; (06)→IAR 280020
 Note: (06) is return address
ADDI R0+ext(09)→R3 410309
ADDI R0+ext(15)→R4 410415
ADDI R0+ext(0A)→R7 41070A
ADDI R0+ext(11)→R8 410811
ADDI R0+ext(C2)→R10 410AC2
RFE (06)→Prog_Addr F80000
 Note: (06) is IAR
J (0011)→Prog_Addr C80011
SW R1→Mem(R0+01) 450101 0004
SW R2→Mem(R0+02) 450202 0007
SW R3→Mem(R0+03) 450303 0009
SW R4→Mem(R0+04) 450404 0015
SW R7→Mem(R0+07) 450707 000A
SW R8→Mem(R0+08) 450808 0011
SW R10→Mem(R0+0A) 450A0A FFC2

140

k. Simulation Result of Instruction Set 4

141

142

l. Tables of Registers and Memories in Simulation 4

RegisterInstruction Mem
0000

01 410104
02 410207
03 280020
04 410309
05 410415
06 C80011
07 000000
08 000000
09
0A
0B
0C
0D
0E
0F
10
11 450101
12 450202
13 450303
14 450404
15 450707
16 450808
17 450A0A
18 000000
19 000000
1A 000000
1B
1C
1D
1E
1F
20 41070A
21 410811
22 410AC2
23 000000
24 000000
25 000000
26 F80000
27 000000

01 0004
02 0007
03 0009
04 0015
05
06
07 000A
08 0011
09
10 FFC2
11
12
13
14
15

28 000000
29
2A

Data Mem
00
01 0004
02 0007
03 0009
04 0015
05
06
07 000A
08 0011
09
0A FFC2
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A

06 IAR

143

D. TMR ASSEMBLY WITHOUT MEMORIES

1. Schematic

This is the design without the latch at the bottom. Three KDLX processors are at

the left and the six voters at the center. Signals such as V_ERR, CID_1, CID_0, and ERR

are collected individually to four buses at the right. The read signal is used to enable

buffers for data from memory. The write signal is used to enable buffers for data to

memory.

144

145

2. Test Bench

The clock high and low times are each 50 ns. The input setup time and output

valid delay times are each 10 ns. Since there are only two instructions, the test bench

looks simple. It loads data in registers and stores back to memory to check whether this

schematic works properly.

3. Simulation Result

As described in Chapter V this schematic without a latch does not write correct

data into the registers due to a timing problem. This kind of error disappears when

memories are connected. Because this appendix only displays the final design of each

component, the imperfect simulation result is still contained here. The TMR with a latch

is discussed in Chapter V so it is not contained here even though it works perfectly with-

out memories.

146

E. TMR ASSEMBLY WITH MEMORIES

1. Schematic

This schematic uses the TMR Assembly without a latch. The instruction memory

on the left side sends one instruction to the three processors at the same time. Therefore,

this schematic is used only for checking basic functions. Nothing related with fault toler-

ant can be tested here.

147

148

2. Test Bench

Since the instruction is pre-configured in ROM and RAM has default value 000316,

no data needs to be assigned. The test bench ends at 2900 ns. The clock high and low

times for both memories and processors are each 50 ns. The input setup time and output

valid delay are 10 ns for processors and 5 ns for memories.

3. Simulation Result

149

F. FAULT-TOLERANT TESTING

1. Schematic

This simulation uses three ROMs to achieve the goal of inserting different instruc-

tions. This simulates the condition whenever three processors have inconsistent instruc-

tions. The TMRA can also be modified to connect with three different RAMs. Then the

simulation will be more complex and much more time needed for analysis. As discussed

in Chapter V, such errors should be caught and corrected by the voters as long as no more

than one SEU occurs in a voter.

150

151

2. Test Bench

The memories are pre-configured so no special settings are needed in this test

bench. The simulation ends at 3400 ns. The clock high and low times for both memories

and processors are each 50 ns. The input setup time and output valid delay are 10 ns for

processors and 5 ns for memories.

3. Memories Pre-configuration

Only one instruction is different in each address of ROMs. This avoids multiple

errors being sent to the voters at the same time. The RAM contains non-repeated data in

each address. Details on how to read the error detection signal and analyze the error are

discussed in Chapter V.

ROM A ROM B ROM C RAM
00 000000 00 000000 00 000000 00 20
01 000000 01 000000 01 000000 01 21
02 000000 02 000000 02 000000 02 22
03 44010A 03 44010A 03 44010A 03 23
04 440203 04 44020B 04 44020B 04 24
05 44030C 05 440A0C 05 44030C 05 25
06 44040D 06 44040D 06 350911 06 26
07 000000 07 000000 07 000000 07 27
08 000000 08 000000 08 000000 08 28
09 000000 09 000000 09 000000 09 29
0A 000000 0A 000000 0A 000000 0A 2A
0B 450106 0B 450103 0B 450103 0B 2B
0C 450208 0C 450207 0C 450208 0C 2C
0D 450309 0D 450309 0D 450302 0D 2D
0E 450410 0E 450410 0E 450410 0E 2E

152

4. Simulation Result

153

G. RECONCILER

1. Schematic

2. Test Bench

The clock high and low times are each 50 ns. The input setup time and output

valid delay are each 10 ns. Manually set values in the data address, the program counter

and the data were used to distinguish which one was fetched.

3. Simulation Result

rec
- clk_r

- reset_r

-rd_r

- wr_r

E addrin_r(15:0)

Epc_r(15:0)

E datain_r(23:0)

dataout_r(23:0) :

wrout r -

state_r(3:0) I

instr_data(23:0) I

mem_data(15:0) :

154

H. RECONCILER WITH KDLX AND MEMORY

1. Schematic

155

2. Test bench

The clock high and low times for KDLX, Reconciler, and memory are 50 ns, 25

ns, and 25 ns, respectively. The input setup times and output valid delays for KDLX,

Reconciler, and memory are 8 ns, 9 ns, and 10 ns, respectively.

3. Simulation Result

156

I. INTERRUPT

1. Schematic

The rfe_i(23:0) is used to monitor the RFE instruction. The pc_in(15:0) is con-

nected to the program counter of KDLX. The signal sel_i(23:0) controls the muxes in

order to insert the TRAP and Jump instruction sent out from trap_i(23:0).

2. Test Bench

Random numbers are assigned to rfe_i(23:0) and pc_in(15:0). An RFE instruc-

tion at time 900 ns emulates the end of the ISR.

interrupt
clkj sel_i(23:0)

reset_i
pc_out(15:0)

err
trap_i(23:0)

rfe_i(23:0)

pc_in(15:0)
state_i(3:0)

157

3. Simulation Result

J. INTERRUPT WITH KDLX AND MEMORY

1. Schematic

The Reconciler is not included in this schematic so two memories are used for a

Harvard architecture. In this design, the Interrupt only needs to monitor the instructions

from the ROM. The error signal is triggered manually in the test bench. Once the ISR

starts, the instruction on the bus will be replaced with the TRAP instruction and lead the

KDLX to implement the specific ISR. The last instruction in the ISR is the RFE instruc-

tion which activates the Interrupt to insert a new Jump instruction into KDLX. Then the

circuit goes back to its normal operation.

/testbencWi*.!

/WslDcnclVrfe i

/wsttendi/w

/testbencWpc oiX

/cestMoch/uLi

/Catbench/lrap I

/tMtMKti/stm_i

QOQ03S tQ00Q6A

l00D2

~l0O0OD4 ~l00013E

(OOOG

lOOOODO

{iKMionn

K:

~t00021J

(OOOA

/(MitwKh/rtii.i J _ 1 1 L -J 1 _ -J 1 L_ _l 1 L ̂ 1 1 L -J ^
/teftboKh/fh 1 000247 I00027C 000261 10002E6 0003IB 1O0O33B FBOOOO IDOOJSA OOOSEF [000424 000459 100048E

m»H IOOCK: nxN) Innoh nnnK lUlll) oini Iml^ (»H |()014 nnis Imth 1

ytwUnncft/en

/(i-Jhi>ii<IV'i-irt_i

/totbendVlK tNit

/HstMnch/uLi

■

'
/teatendVtnp.l ^ocoj«) iC80CO4

—■

/ifsHicnilV'Wi' 1)A h ic p l'- |u u IF lo |1 1^ »^ 1

158

159

2. Test Bench

The KDLX clock high and low times are each 50 ns. The input setup time and

output valid delay are each 10 ns. The Interrupt, ROM and RAM all run in double speed

with a clock high and low time of 25 ns. The setup time and hold times are each 3 ns.

Generate an error in the test bench at time 900 ns to check the function of the state ma-

chine. This test bench stops at time 4900 ns.

160

3. Memory Pre-configuration and Results

The highlighted Opcode is where an error occurs in the test bench. Contents in

the Instruction Mem and the upper half data of the Data Mem are pre-configured. Regis-

ters and the lower half data of the Data Mem are the final values after the simulation is

done.

Instruction Mem
0000

01
02 440101
03 440202
04 440303
05 440404
06 440505
07 440606
08 440707
09 440808
0A 440909
0B 450110
0C 450211
0D 450312
0E 450413
0F 450514
10 450615
11 450716
12 450817
13 450918
14 450A19
15 450B1A
16 450C1B
.
.
.
.

.

.

.

.

2C

01 0044
02 0045
03 0046
04 0047
05 0048
06 0049
07 004A
08 004B
09 004C
10 0055
11 0066
12 0077
13
14
15

Data Mem
00
01 0044
02 0045
03 0046
04 0047
05 0048
06 0049
07 004A
08 004B
09 004C
0A
0B
0C
0D
0E
0F
10 0044
11 0045
12 0046
13 0047
14 0048
15 0049
16 004A
17 004B
18 004C
19

Register
2D
2E
2F
30 000000
31 000000
32 000000
33 450420
34 450520
35 450620
36 450720
37 411A11
38 411B22
39 411C33
3A 000000
3B 000000
3C 000000
3D F80000
3E 000000
3F 000000
40 000000
41
42
43
44
45
46

161

4. Simulation Result

162

K. THE FULL DESIGN WITHOUT ESSD

1. Schematic

Three RAMs are used to provide inconsistent data to TMRA. This schematic is

designed for simulating the circumstance at the occurrence of an error. The real design

needs only one RAM and does not have to triplicate the instruction and data buses.

163

164

2. Test Bench

The clock high and low times for KDLX, Reconciler, Interrupt, and memory are

50 ns, 25 ns, 25 ns, and 25 ns, respectively. The input setup times and output valid de-

lays for KDLX, Reconciler, Interrupt, and memory are 8 ns, 9 ns, 9 ns, and 10 ns, respec-

tively. The ending point of this test bench is at 4900 ns.

The signals between clk_i and clk_m are associated with the Interrupt clock cycle.

The signals between clk_m and clk_p are associated with the memory clock cycle. Each

signal in simulation has to be associated with one clock.

165

3. Memory Pre-configurations

RAM A, B and C
00 000000
01 000000
02 44014A
03 44024B
04 44034C
05 44044D
06 44054E
07 44064E
08 000000
09 000000
0A 000000
0B 44014A
0C 44024B
0D 44034C
0E 44044D
0F 44054E
10 44064E
11 000000
12 000000
13 000000
14 000000
.
.
.
.
.
.
.

.

.

.

.

.

.

.
2C

2D
2E
2F
30 45014A
31 45024B
32 45034C
33 45044D
34 45054E
35 45064F
36 000000
37 000000
38 000000
39 F80000
3A 000000
3B 000000
3C 000000
3D
3E

.

.

.

.

.

.

4A 0000AA
4B 0000BB
4C 0000CC
4D 0000DD
4E 0000EE
4F 0000FF
50

RAM B has 00011

ISR

166

4. Simulation Result

167

168

5. Zoom-in Figures of cid_1 and cid_0

L. THE FULL DESIGN WITH ESSD

1. Schematic

The ESSD intercepts all connections on RAMs when the error syndromes are be-

ing stored. The clock for Interrupt and Reconciler are wired together since they work in

parallel.

■ ■

0005 '0006 '0007 1,0008 '0009 ' OOOA ")
■

004A I004B 1 jl004C 1004D '.004E ,|004F . _

- - I I 1 I)
(I ! I- I I- -[I I I I I)

10033 10034)[0035 10036 1(0037 10038 ;

I004A l004B !004C |004D |004E !004F
1

j

V \
A A

V V
A A 1— 1— 1 1 A A 1-)

1

J

I i- I-), I l^ I—I"- «—«-" h) n

1

(OOOE lOOOF looio loon '0012 iOOlB)

(004A 10046 l004C I004D I004E I004F

(_ (_ L_ L„ ■■ 1 - I— h-1- - I— I— I— I-
 I — I— I- - h- I— h-1- - h- I— I— I— ')

169

170

2. Test Bench

The clock high and low times for KDLX, latch51, Reconciler (or Interrupt),

ESSD, and memory are 50 ns, 25 ns, 25 ns, 25 ns, and 25 ns, respectively. The input

setup times and output valid delays for KDLX, latch51, Reconciler (or Interrupt), ESSD,

and memory are 8 ns, 8 ns, 9 ns, 9 ns, and 10 ns, respectively. The test bench ends at

time 4900 ns.

171

3. Simulation Result

172

173

APPENDIX B: KDLX INSTRUCTION SET DESCRIPTION

This appendix lists all of the operation codes and functions of the instructions

used in the KDLX. This reference was originally contained in Dr. Kenneth Clark’s dis-

sertation [8]. Some errors were found and have been checked with the author. The func-

tion of the correct operation codes has been proved in the simulations of this thesis. The

operation description is revised in order to give a clear discription of how data transfers.

Some symbols used in this appendix need to be introduced first. Rs1 represents

one of the 15 registers in KDLX. Rs2 represents one of the 15 registers in KDLX as

well. Rs1 and Rs2 could be the same register. Rd represents one of the 15 registers in

KDLX used as a destination register. Immed7 represents the most significant bit of a 7-

bit immediate value. [(Immed7)8 || Immed] represents an 7-bit immediate value being

sign extended to 16-bit long.

Instruction: ADD (Register Add)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x01 Rs1 Rd Rs2 Unused

Usage: ADD Rd, Rs1, Rs2

Operation: Rd ← (Rs1+Rs2)

Instruction: ADDI (Add Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x01 Rs1 Rd Rs2 Unused

Usage: ADDI Rd, Rs1, Immed

Operation: Rd ← (Rs1+[(Immed7)8 || Immed])

Instruction: ADDUI (Add Unsigned Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x21 Rs1 Rd Immed

Usage: ADDUI Rd, Rs1, Immed

Operation: Rd ← (Rs1+[(0)8 || Immed])

174

Instruction: AND (Register AND)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x09 Rs1 Rd Rs2 Unused

Usage: AND Rd, Rs1, Rs2

Operation: Rd ← (Rs1 (logical-and) Rs2)

Instruction: ANDI (AND Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x29 Rs1 Rd Immed

Usage: AND Rd, Rs1, Immed

Operation: Rd ← (Rs1 (logical-and) [(Immed7)8 || Immed])

Instruction: BEQZ (Branch if Equal to Zero)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0xC1 Rs1 Unused Immed

Usage: BEQZ Rs1, Immed

Operation: If Rs1=0, then Program_Address ← (PC+1+[(Immed7)8 || Immed])

Instruction: BNEZ (Branch if Not Equal to Zero)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0xC0 Rs1 Unused Immed

Usage: BNEZ Rs1, Immed

Operation: If Rs1≠0, then Program_Address ← (PC+1+[(Immed7)8 || Immed])

Instruction: J (Jump)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0xC8 Immed

Usage: J Immed

Operation: Program_Address ← Immed

175

Instruction: JAL (Jump and Link)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0xE8 Immed

Usage: JAL Immed

Operation: Program_Addr ← Immed;

R15 ← Link_Program_Address

Instruction: JALR (Jump Register and Link)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x68 Rs1 Unused

Usage: JALR Rs1

Operation: Program_Addr ← (Rs1);

R15 ← Link_Program_Address

Instruction: JR (Jump Register)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x48 Rs1 Unused

 Usage: JALR Rs1

Operation: Program_Address ← (Rs1)

Instruction: LHI (Load High Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x08 Unused Rd Immed

Usage: LHI Rd, Immed

Operation: Rd ← Immed || (0)8

Instruction: LW (Load Word)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x44 Rs1 Rd Immed

Usage: LW Rd, Rs1(Immed)

Operation: Rd ← Mem{Rs1+[(Immed7)8 || Immed]}

176

Instruction: NOP (No Operation)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x00 Unused

Usage: NOP

Operation: None

Instruction: OR (Register OR)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x2A Rs1 Rd Rs2 Unused

Usage: OR Rd, Rs1, Rs2

Operation: Rd ← (Rs1 (logical-or) Rs2)

Instruction: ORI (OR Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x2A Rs1 Rd Immed

Usage: ORI Rd, Rs1, Immed

Operation: Rd ← (Rs1 (logical-or) Immed)

Instruction: RFE (Return from Exception)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0xF8 Unused

Usage: RFE

Operation: Program_Address ← Interrupt_Address_Register

Instruction: SEQ (Set if Equal)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x18 Rs1 Rd Rs2 Unused

Usage: SEQ Rd, Rs1, Rs2

Operation: If Rs1=Rs2, then Rd=0x0001 else Rd=0x0000

177

Instruction: SEQI (Set Equal Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x58 Rs1 Rd Immed

Usage: SEQI Rd, Rs1, Immed

Operation: If Rs1=[(Immed7)8 || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SGE (Set if Greater Than or Equal)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x19 Rs1 Rd Rs2 Unused

Usage: SGE Rd, Rs1, Rs2

Operation: If Rs1 ≥ Rs2, then Rd=0x0001 else Rd=0x0000

Instruction: SGEI (Set if Greater Than or Equal Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x59 Rs1 Rd Immed

Usage: SGEI Rd, Rs1, Immed

Operation: If Rs1 ≥ [(Immed7)8 || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SGT (Set if Greater Than)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x1A Rs1 Rd Rs2 Unused

Usage: SGT Rd, Rs1, Rs2

Operation: If Rs1>Rs2, then Rd=0x0001 else Rd=0x0000

Instruction: SGTI (Set if Greater Than Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x5A Rs1 Rd Immed

Usage: SGTI Rd, Rs1, Immed

Operation: If Rs1>[(Immed7)8 || Immed], then Rd=0x0001 else Rd=0x0000

178

Instruction: SLE (Set if Less Than or Equal)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x1B Rs1 Rd Rs2 Unused

Usage: SLE Rd, Rs1, Rs2

Operation: If Rs1 ≤ Rs2, then Rd=0x0001 else Rd=0x0000

Instruction: SLEI (Set if Less Than or Equal Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x5B Rs1 Rd Immed

Usage: SLEI Rd, Rs1, Immed

Operation: If Rs1 ≤ [(Immed7)8 || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SLL (Shift Logic Left)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x11 Rs1 Rd Rs2 Unused

Usage: SLL Rd, Rs1, Rs2

Operation: Rd ← (Rs1) shifted left by Rs2(3:0) bits

Instruction: SLLI (Shift Logic Left Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x51 Rs1 Rd Immed

Usage: SLLI Rd, Rs1, Immed

Operation: Rd ← (Rs1) shifted left by Immed(3:0) bits

Instruction: SLT (Set if Less Than)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x1C Rs1 Rd Rs2 Unused

Usage: SLT Rd, Rs1, Rs2

Operation: If Rs1<Rs2, then Rd=0x0001 else Rd=0x0000

179

Instruction: SLTI (Set if Less Than Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x5C Rs1 Rd Immed

Usage: SLTI Rd, Rs1, Immed

Operation: If Rs1<[(Immed7)8 || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SNE (Set if Not Equal)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x1D Rs1 Rd Rs2 Unused

Usage: SNE Rd, Rs1, Rs2

Operation: If Rs1≠Rs2, then Rd=0x0001 else Rd=0x0000

Instruction: SNEI (Set if Not Equal Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x58 Rs1 Rd Immed

Usage: SNEI Rd, Rs1, Immed

Operation: If Rs1≠[(Immed7)8 || Immed], then Rd=0x0001 else Rd=0x0000

Instruction: SRA (Shift Right Arithmetic)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x13 Rs1 Rd Rs2 Unused

Usage: SRA Rd, Rs1, Rs2

Operation: Rd ← (Rs1) shifted by Rs2(3:0) bits, with Rs1(15) shifted in from

right (for sign extension)

Instruction: SRAI (Shift Right Arithmetic Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x53 Rs1 Rd Immed

Usage: SRAI Rd, Rs1, Immed

Operation: Rd ← (Rs1) shifted by Immed(3:0) bits, with Rs1(15) shifted in from

right (for sign extension)

180

Instruction: SRL (Shift Right Logical)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x12 Rs1 Rd Rs2 Unused

Usage: SRL Rd, Rs1, Rs2

Operation: Rd ← (Rs1) shifted by Rs2(3:0) bits, with 0’s shifted in from right

Instruction: SRLI (Shift Right Logical Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x52 Rs1 Rd Immed

Usage: SRLI Rd, Rs1, Immed

Operation: Rd ← (Rs1) shifted by Immed(3:0) bits, with 0’s shifted in from right

Instruction: SUB (Register Subtract)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x03 Rs1 Rd Rs2 Unused

Usage: SUB Rd, Rs1, Rs2

Operation: Rd ← (Rs1−Rs2)

Instruction: SUBI (Subtract Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x43 Rs1 Rd Immed

Usage: SUB Rd, Rs1, Immed

Operation: Rd ← (Rs1−[(Immed7)8 || Immed])

Instruction: SUBUI (Subtract Unsigned Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x23 Rs1 Rd Immed

Usage: SUBUI Rd, Rs1, Immed

Operation: Rd ← (Rs1−[(0)8 || Immed])

181

Instruction: SW (Store Word)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x45 Rs1 Rd Immed

Usage: SW Rs2, Rs1(Immed)

Operation: Mem{Rs1+[(Immed7)8 || Immed]} ← Rs2

Instruction: TRAP (Software Trap)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x28 Unused

Usage: Trap Immed

Operation: Program_Address ← Immed;

Interrupt_Address_Register ← Link_Program_Address

Instruction: XOR (Register Exclusive-OR)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x0B Rs1 Rd Rs2 Unused

Usage: XOR Rd, Rs1, Rs2

Operation: Rd ← (Rs1 (exclusive-or) Rs2)

Instruction: XORI (Exclusive-OR Immediate)
23 20 19 16 15 12 11 8 7 4 3 0

Opcode: 0x2B Rs1 Rd Immed

Usage: XORI Rd, Rs1, Immed

Operation: Rd ← (Rs1 (exclusive-or) Immed)

182

THIS PAGE INTENTIONALLY LEFT BLANK

183

APPENDIX C: VHDL CODE

A. RECONCILER

--***
-- Module: Reconciler
--
-- Function: The Reconciler is used as an interface between the KDLX
-- and memory. It runs two times faster than the KDLX.
--
-- Author: Rong Yuan, TWAF
--
-- Date: Nov 14, 2003
--***

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity rec is Port (
 clk_r: in std_logic;
 reset_r: in std_logic;
 rd_r: in std_logic;
 wr_r: in std_logic;
 addrin_r: in std_logic_vector(15 downto 0);
 pc_r: in std_logic_vector(15 downto 0);
 datain_r: in std_logic_vector(23 downto 0);
 addrout_r: out std_logic_vector(15 downto 0);
 instr_data: out std_logic_vector(23 downto 0);
 dataout_r: out std_logic_vector(23 downto 0);
 mem_data: inout std_logic_vector(15 downto 0);
 wrout_r: out std_logic;
 state_r: out std_logic_vector(3 downto 0)
);
end rec;

architecture fsm of rec is -- fsm is Finite State Machine

type targetFSM is (State, State0, State1, ReadState, WriteState);

signal currState, nextState: targetFSM;

begin

nxtStProc: process (currState, rd_r, wr_r)

begin

184

case currState is
 when State =>
 nextState <= State0;
 when State0 =>
 if (rd_r='0' and wr_r='1') then -- read from memory
 nextState <= ReadState;
 elsif (rd_r='1' and wr_r='0') then -- write to memory
 nextState <= WriteState;
 else
 nextState <= State1;
 end if;

 when State1 =>
 nextState <= State0;
 when ReadState =>
 nextState <= State0;
 when WriteState =>
 nextState <= State0;
 end case;

end process nxtStProc;

-- Process to register the current state

curStProc: process (clk_r, reset_r)

begin
 if (reset_r ='0') then
 currState <= State;
 elsif (clk_r'event and clk_r='1') then
 currState <= nextState;
 end if;
end process curStProc;

-- Process to generate outputs

outConProc: process (currState, wr_r, pc_r, datain_r, addrin_r,

mem_data)

begin

case currState is
 when State => -- generated for reset only
 null; -- without this state, state machine

starts at State1 after reset

 when State0 => -- doing instruction fetch
 state_r <= "0000";
 wrout_r <= wr_r;
 addrout_r <= pc_r; -- sending pc to memory
 instr_data <= datain_r; -- memory sends instruction

to KDLX
 dataout_r <= (others => 'Z');
 mem_data <= (others => 'Z');

185

 when State1 => -- exactly the same as State0
 -- for keeping current state
 state_r <= "0001";
 wrout_r <= wr_r;
 addrout_r <= pc_r;
 instr_data <= datain_r;
 dataout_r <= (others => 'Z');
 mem_data <= (others => 'Z');
 when ReadState => -- When KDLX reads data from memory
 state_r <= "0010";
 wrout_r <= wr_r; -- write signal is one
 addrout_r <= addrin_r; -- sending address to memory
 mem_data <= datain_r(15 downto 0);
 -- memory sends data to KDLX
 dataout_r <= (others => 'Z'); -- block input to memory

 when WriteState => -- When KDLX writes data to memory
 state_r <= "0011";
 wrout_r <= wr_r; -- write signal is zero
 addrout_r <= addrin_r; -- sending address to memory
 dataout_r(15 downto 0) <= mem_data;
 -- KDLX sends data to memory
 dataout_r(23 downto 16) <= "00000000";
 -- sign extension data

end case;

end process outConProc;

end fsm;

186

B. INTERRUPT

--***
-- Module: Interrupt
--
-- Function: The Interrupt is used to switch to ISR when err occurs.
-- It runs in double speed and has the same time constraints with
-- Reconciler. TRAP to other instruction set and jump back when done.
--
-- Notation: This Interrupt is revised to work with TMRA in this design
-- only. This is the final version before ESSD is generated. Only two
-- NOPs after TRAP.
--
-- Author: Rong Yuan, TWAF
--
-- Date: Nov 17, 2003
--***

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Interrupt is Port (
 rfe_i: in std_logic_vector(23 downto 0);
 pc_in: in std_logic_vector(15 downto 0);
 err: in std_logic;
 reset_i: in std_logic;
 clk_i: in std_logic;

 pc_out: out std_logic_vector(15 downto 0);
 sel_i: out std_logic_vector(23 downto 0);
 trap_i: out std_logic_vector(23 downto 0);
 state_i: out std_logic_vector(3 downto 0)
);
end Interrupt;

architecture fsm of Interrupt is

type targetFSM is (State, State0_A, State0_B, TrapState_A, TrapState_B,
 NopState0_A, NopState0_B, NopState1_A, NopState1_B,
 WaitState_A, WaitState_B, BackState_A, BackState_B);

signal pc_latch: std_logic_vector(15 downto 0);
signal new_instr: std_logic_vector(23 downto 0);
signal currState, nextState: targetFSM;

begin

nxtStProc: process (currState, err, rfe_i)

begin

187

case currState is

 when State =>
 nextState <= State0_A;

 when State0_A =>
 nextState <= State0_B;

 when State0_B =>
 if (err='1') then
 nextState <= TrapState_A;
 else
 nextState <= State0_A;
 end if;

 when TrapState_A =>
 nextState <= TrapState_B;

 when TrapState_B =>
 nextState <= NopState0_A;

 when NopState0_A =>
 nextState <= NopState0_B;

 when NopState0_B =>
 nextState <= NopState1_A;

 when NopState1_A =>
 nextState <= NopState1_B;

 when NopState1_B =>
 nextState <= WaitState_A;

 when WaitState_A =>
 nextState <= WaitState_B;

 when WaitState_B =>
 if (rfe_i(23 downto 16)="11111000") then -- check F80000
 nextState <= BackState_A;
 else
 nextState <= WaitState_A; -- stay if not seeing F80000
 end if;

 when BackState_A =>
 nextState <= BackState_B;

 when BackState_B =>
 nextState <= State0_A;

end case;

end process nxtStProc;

-- Process to register the current state

curStProc: process (clk_i, reset_i)

188

begin

 if (reset_i ='0') then
 currState <= State;
 elsif (clk_i'event and clk_i='1') then
 currState <= nextState;
 end if;

end process curStProc;

-- Process to generate outputs

outConProc: process (currState, pc_in)

begin

case currState is
 when State =>
 null;

 when State0_A =>
 state_i <= "0000";
 trap_i <= (others =>'Z');
 sel_i <= "111111111111111111111111";
 pc_out <= (others => 'Z');

 when State0_B =>
 state_i <= "0001";
 trap_i <= (others =>'Z');
 sel_i <= "111111111111111111111111";
 pc_out <= (others => 'Z');

 when TrapState_A =>
 state_i <= "0010";
 sel_i <= "000000000000000000000000"; --allow TRAP pass to KDLX
 trap_i <= "001010000000000000110000"; --TRAP instr 2800030
 pc_latch <= pc_in; --latch pc for new instruction

 when TrapState_B =>
 state_i <= "0011";
 sel_i <= "000000000000000000000000";
 pc_out <= pc_latch; --show latched pc on bus

 when NopState0_A =>
 state_i <= "0100";
 trap_i <= "000000000000000000000000"; --allow NOP to KDLX
 sel_i <= "000000000000000000000000";
 pc_out <= (others => 'Z');

 when NopState0_B =>
 state_i <= "0101";
 sel_i <= "000000000000000000000000"; --allow NOP to KDLX
 pc_out <= (others => 'Z');

 when NopState1_A =>
 state_i <= "0110";

189

 trap_i <= "000000000000000000000000";
 sel_i <= "000000000000000000000000";
 pc_out <= (others => 'Z');

 --construct new JUMP instr
 new_instr(23 downto 16) <= "11001000";
 new_instr(15 downto 0) <= pc_latch; --JUMP is C8+pc

 when NopState1_B =>
 state_i <= "0111";
 sel_i <= "000000000000000000000000";
 pc_out <= (others => 'Z');

 when WaitState_A =>
 state_i <= "1000";
 trap_i <= (others => 'Z');
 sel_i <= "111111111111111111111111";
 pc_out <= (others => 'Z');

 when WaitState_B =>
 state_i <= "1001";
 trap_i <= (others => 'Z');
 sel_i <= "111111111111111111111111";
 pc_out <= (others => 'Z');

 when BackState_A =>
 state_i <= "1010";
 trap_i <= new_instr; --allow new JUMP to KDLX
 sel_i <= "000000000000000000000000";
 pc_out <= (others => 'Z');

 when BackState_B =>
 state_i <= "1011";
 sel_i <= "000000000000000000000000";
 pc_out <= (others => 'Z');

end case;
end process outConProc;
end fsm;

190

C. RECONCILER FOR THE FULL DESIGN

--***
-- Module: Reconciler
--
-- Function: The Reconciler is used as an interface between TMRA and
-- memory. It runs in double speed. Act as instruction memory in the
-- first half KDLX clock and as data memory in the second half KDLX
-- clock.
--
-- Notation: This Reconciler is revised to work with the TMRA in this
-- design only. Data buses are triplicated.
--
-- Author: Rong Yuan, TWAF
--
-- Date: Nov 14, 2003
--***

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity rec2 is Port (
 clk_r: in std_logic;
 reset_r: in std_logic;
 rd_r: in std_logic;
 wr_r: in std_logic;
 addrin_r: in std_logic_vector(15 downto 0);
 pc_r: in std_logic_vector(15 downto 0);
 datain_a: in std_logic_vector(23 downto 0);
 datain_b: in std_logic_vector(23 downto 0);
 datain_c: in std_logic_vector(23 downto 0);

 addrout_r: out std_logic_vector(15 downto 0);
 instr_data_a: out std_logic_vector(23 downto 0);
 instr_data_b: out std_logic_vector(23 downto 0);
 instr_data_c: out std_logic_vector(23 downto 0);
 dataout_r: out std_logic_vector(23 downto 0);
 mem_data_a: out std_logic_vector(15 downto 0);

-- data from mem to KDLX
 mem_data_b: out std_logic_vector(15 downto 0);
 mem_data_c: out std_logic_vector(15 downto 0);
 mem_data_wr: in std_logic_vector(15 downto 0);

-- data from KDLX to mem
 wrout_r: out std_logic;
 state_r: out std_logic_vector(3 downto 0)
);
end rec2;

architecture fsm of rec2 is -- fsm is Finite State Machine

type targetFSM is (State, State0, State1, ReadState, WriteState);

191

signal currState, nextState: targetFSM;

begin

nxtStProc: process (currState, rd_r, wr_r)

begin

case currState is

 when State =>
 nextState <= State0;

 when State0 =>
 if (rd_r='0' and wr_r='1') then -- read from memory
 nextState <= ReadState;
 elsif (rd_r='1' and wr_r='0') then -- write to memory
 nextState <= WriteState;
 else
 nextState <= State1;
 end if;

 when State1 =>
 nextState <= State0;

 when ReadState =>
 nextState <= State0;

 when WriteState =>
 nextState <= State0;

end case;

end process nxtStProc;

-- Process to register the current state

curStProc: process (clk_r, reset_r)

begin

 if (reset_r ='0') then
 currState <= State;
 elsif (clk_r'event and clk_r='1') then
 currState <= nextState;
 end if;

end process curStProc;

-- Process to generate outputs
outConProc: process (currState, wr_r, pc_r, datain_a, datain_b,
 datain_c, addrin_r, mem_data_wr)

begin

case currState is

192

-- without this state, state machine starts at State1 after reset

 when State => -- generated for reset only
 null;

 when State0 => -- doing instruction fetch
 state_r <= "0000";
 wrout_r <= wr_r;
 addrout_r <= pc_r; -- sending pc to memory

 if (datain_a(23 downto 16)="11111000") then
 instr_data_a <= "000000000000000000000000";
 instr_data_b <= "000000000000000000000000";
 instr_data_c <= "000000000000000000000000";
 else
 instr_data_a <= datain_a;-- memory sends instruction to KDLX
 instr_data_b <= datain_b;
 instr_data_c <= datain_c;
 end if;

 dataout_r <= (others => 'Z');
 mem_data_a <= (others => 'Z');
 mem_data_b <= (others => 'Z');
 mem_data_c <= (others => 'Z');

 when State1 => -- exactly the same as State0
 -- for keeping current state
 state_r <= "0001";
 wrout_r <= wr_r;
 addrout_r <= pc_r;

 if (datain_a(23 downto 16)="11111000") then
 instr_data_a <= "000000000000000000000000";
 instr_data_b <= "000000000000000000000000";
 instr_data_c <= "000000000000000000000000";
 else -- memory sends instruction to KDLX
 instr_data_a <= datain_a;
 instr_data_b <= datain_b;
 instr_data_c <= datain_c;
 end if;

 dataout_r <= (others => 'Z');
 mem_data_a <= (others => 'Z');
 mem_data_b <= (others => 'Z');
 mem_data_c <= (others => 'Z');

 when ReadState => -- When KDLX reads data from memory
 state_r <= "0010";
 wrout_r <= wr_r; -- write signal is one
 addrout_r <= addrin_r; -- sending address to memory

 -- memory sends data to KDLX
 mem_data_a <= datain_a(15 downto 0);
 mem_data_b <= datain_b(15 downto 0);
 mem_data_c <= datain_c(15 downto 0);
 dataout_r <= (others => 'Z'); -- block input to memory

193

 when WriteState => -- When KDLX writes data to memory
 state_r <= "0011";
 wrout_r <= wr_r; -- write signal is zero
 addrout_r <= addrin_r; -- sending address to memory

 -- KDLX sends data to memory
 dataout_r(15 downto 0) <= mem_data_wr;
 dataout_r(23 downto 16) <= "00000000"; -- sign extension data

end case;

end process outConProc;

end fsm;

194

D. ESSD

--***
-- Module: Error Syndrome Storage Device (ESSD)
--
-- Function: The ESSD is used to store error syndrome when err occurs.
-- It runs in double speed and has the same time constraints with
-- Reconciler. Stall KDLX at the beginning of ISR.
--
-- Notation: This ESSD works with the TMRA in this design only. This
-- is the final version.
--
-- Author: Rong Yuan, TWAF
--
-- Date: Nov 21, 2003
--***

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity essd is Port (
 addr_in: in std_logic_vector(15 downto 0);
 pc_in: in std_logic_vector(15 downto 0);
 cid1_in: in std_logic_vector(50 downto 0);
 cid0_in: in std_logic_vector(50 downto 0);
 err: in std_logic;
 reset_s: in std_logic;
 clk_s: in std_logic;

 stall_s: out std_logic;
 wr_s: out std_logic;
 sel_wr: out std_logic;
 addr_s: out std_logic_vector(15 downto 0);
 sel_addr: out std_logic_vector(15 downto 0);
 sel_s: out std_logic_vector(23 downto 0);
 ess: out std_logic_vector(23 downto 0);
 state_s: out std_logic_vector(4 downto 0)
);
end essd;

architecture fsm of essd is

type targetFSM is (State, State0_A, State0_B, LatchState_A,
 LatchState_B, NopState0_A, NopState0_B, NopState1_A,
 NopState1_B, StallState, StoreState0_A,
 StoreState0_B, StoreState0_C, StoreState1_A,
 StoreState1_B, StoreState1_C, StoreState_addr,
 StoreState_pc, BackState);

signal pc_latch, addr_latch: std_logic_vector(15 downto 0);

195

signal cid0_latchA, cid0_latchB, cid0_latchC, cid1_latchA, cid1_latchB,
 cid1_latchC: std_logic_vector(23 downto 0);
signal counter: std_logic_vector(15 downto 0);
signal currState, nextState: targetFSM;

begin

nxtStProc: process (currState, err)

begin

case currState is

 when State =>
 nextState <= State0_A;

 when State0_A =>
 nextState <= State0_B;

 when State0_B =>
 if (err='1') then
 nextState <= LatchState_A;
 else
 nextState <= State0_A;
 end if;

 when LatchState_A =>
 nextState <= LatchState_B;

 when LatchState_B =>
 nextState <= NopState0_A;

 when NopState0_A =>
 nextState <= NopState0_B;

 when NopState0_B =>
 nextState <= NopState1_A;

 when NopState1_A =>
 nextState <= NopState1_B;

 when NopState1_B =>
 nextState <= StallState;

 when StallState =>
 nextState <= StoreState0_A;

 when StoreState0_A =>
 nextState <= StoreState0_B;

 when StoreState0_B =>
 nextState <= StoreState0_C;

 when StoreState0_C =>
 nextState <= StoreState1_A;

196

 when StoreState1_A =>
 nextState <= StoreState1_B;

 when StoreState1_B =>
 nextState <= StoreState1_C;

 when StoreState1_C =>
 nextState <= StoreState_addr;

 when StoreState_addr =>
 nextState <= StoreState_pc;

 when StoreState_pc =>
 nextState <= BackState;

 when BackState =>
 nextState <= State0_A;

end case;

end process nxtStProc;

-- Process to register the current state

curStProc: process (clk_s, reset_s)

begin

 if (reset_s ='0') then
 currState <= State;
 elsif (clk_s'event and clk_s='1') then
 currState <= nextState;
 end if;

end process curStProc;

-- Process to generate outputs
outConProc: process (currState, pc_in, addr_in, cid1_in, cid0_in)

begin
counter <= "0000000001011001"; --starting at address 0059

case currState is
 when State =>
 null;

 when State0_A =>
 state_s <= "00000";
 ess <= (others =>'Z');
 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";
 stall_s <= '1';

 when State0_B =>
 state_s <= "00001";
 ess <= (others =>'Z');

197

 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";
 stall_s <= '1';

 when LatchState_A => --latch all data here
 state_s <= "00010";
 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";
 stall_s <= '1';
 pc_latch <= pc_in;
 addr_latch <= addr_in;

 --seperate input data
 cid1_latchC <= cid1_in(23 downto 0);
 cid1_latchB <= cid1_in(47 downto 24);
 cid1_latchA(2 downto 0) <= cid1_in(50 downto 48);
 cid1_latchA(23 downto 3) <= "000000000000000000000";
 cid0_latchC <= cid0_in(23 downto 0);
 cid0_latchB <= cid0_in(47 downto 24);
 cid0_latchA(2 downto 0) <= cid0_in(50 downto 48);
 cid0_latchA(23 downto 3) <= "000000000000000000000";

 when LatchState_B =>
 state_s <= "00011";
 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";
 stall_s <= '1';

 when NopState0_A =>
 state_s <= "00100";
 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";
 stall_s <= '1';

 when NopState0_B =>
 state_s <= "00101";
 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";
 stall_s <= '1';

 when NopState1_A =>
 state_s <= "00110";
 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";
 stall_s <= '1';

 when NopState1_B =>
 state_s <= "00111";
 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";

198

 stall_s <= '1';

 when StallState => --stall KDLX
 state_s <= "01000";
 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";
 stall_s <= '0';

 when StoreState0_A => --store cid0
 state_s <= "01001";
 sel_s <= "000000000000000000000000";
 sel_wr <= '0';
 sel_addr <= "0000000000000000";
 stall_s <= '0';
 addr_s <= counter;
 wr_s <= '0';
 ess <= cid0_latchC;
 counter <= counter-1;

 when StoreState0_B =>
 state_s <= "01010";
 sel_s <= "000000000000000000000000";
 sel_wr <= '0';
 sel_addr <= "0000000000000000";
 stall_s <= '0';
 addr_s <= counter;
 wr_s <= '0';
 ess <= cid0_latchB;
 counter <= counter-1;

 when StoreState0_C =>
 state_s <= "01011";
 sel_s <= "000000000000000000000000";
 sel_wr <= '0';
 sel_addr <= "0000000000000000";
 stall_s <= '0';
 addr_s <= counter;
 wr_s <= '0';
 ess <= cid0_latchA;
 counter <= counter-1;

 when StoreState1_A => --store cid1
 state_s <= "01100";
 sel_s <= "000000000000000000000000";
 sel_wr <= '0';
 sel_addr <= "0000000000000000";
 stall_s <= '0';
 addr_s <= counter;
 wr_s <= '0';
 ess <= cid1_latchC;
 counter <= counter-1;

 when StoreState1_B =>
 state_s <= "01101";
 sel_s <= "000000000000000000000000";
 sel_wr <= '0';

199

 sel_addr <= "0000000000000000";
 stall_s <= '0';
 addr_s <= counter;
 wr_s <= '0';
 ess <= cid1_latchB;
 counter <= counter-1;

 when StoreState1_C =>
 state_s <= "01110";
 sel_s <= "000000000000000000000000";
 sel_wr <= '0';
 sel_addr <= "0000000000000000";
 stall_s <= '0';
 addr_s <= counter;
 wr_s <= '0';
 ess <= cid1_latchA;
 counter <= counter-1;

 when StoreState_addr => --store mem addr
 state_s <= "01111";
 sel_s <= "000000000000000000000000";
 sel_wr <= '0';
 sel_addr <= "0000000000000000";
 stall_s <= '0';
 addr_s <= counter;
 wr_s <= '0';
 ess(15 downto 0) <= addr_latch;
 ess(23 downto 16) <= "00000000";
 counter <= counter-1;

 when StoreState_pc => --store pc
 state_s <= "10000";
 sel_s <= "000000000000000000000000";
 sel_wr <= '0';
 sel_addr <= "0000000000000000";
 stall_s <= '0';
 addr_s <= counter;
 wr_s <= '0';
 ess(15 downto 0) <= pc_latch;
 ess(23 downto 16) <= "00000000";
 counter <= counter-1;

 when BackState => --release KDLX
 state_s <= "10001";
 sel_s <= "111111111111111111111111";
 sel_wr <= '1';
 sel_addr <= "1111111111111111";
 stall_s <= '1';
 addr_s <= (others =>'Z');
 wr_s <= '1';
 ess <= (others =>'Z');

end case;
end process outConProc;
end fsm;

200

E. KDLX

The KDLX is a 16-bit RISC soft-core processor. It is 5-stage pipelined including

fetch, decode, execute, memory, and write back. The KDLX is coded by Dr. Kenneth

Clark and following is the construction of the source core in ISE software.

B 0 diKjeslbench (dl-_oul vhd)
I E a dk[dkvhd)
i &. 0 core (core vhd)

- j?] alu(alu vhd]
I B 0 adder (adder vhd)
I 0 ao22 (A022 vhd)
! I?] alu_logic (alu_logic vhd)
! B 0 log_barrel (log_barrel vhd)
I |7] word_mu-4 (word_mu-4 vhd)
I I?] word_mu-4 (word_mu-4 vhd)
I B 0 word_^el (word_^el vhd)
I 0 zero_le^l (zero_le^l vhd)
i B j?] pc_conlrol (pc_conlrol vhd)
I I?] incremeni (incremeni vhd)
I I?] word_mu-3 (word_mu-3 vhd)
I B j?] word_reg_^ingle (word_reg_^ingle vhd)

2] scan_reg (^can_reg vhd]
B 0 p(>eline (pipeline vhd)

B W\ lwelve_bil_reg_^ingle (fwelve_hif_reg_iingle vhd}
I |?| ^can_reg (^can_reg vhd)

B W lwenlv_lour_bil_reg_^ingle (fwenlv_four_bif_reg_iingfe vhd]
I B 0 lwelve_bil_reg_^ingle (lwelve_bil_reg_^ingle vhd)
I |?| ^can_reg (^can_reg vhd)

B j?) reglile (reglile vhd)
I 0 de^Ldecoder (De^LDecoder vhd)

I?] word_mui.l6 (word_muxl6.vhd)
i B 0 word_reg_^ingle (word_reg_^ingle vhd)
I |?| ^can_reg (^can_reg vhd)

I?) ri^i_cDnlrol (rw_conlrol.vhd)
I I?] word_mu-3 (word_mu-3 vhd)
I I?] word_mu-4 (word_mu-4 vhd)
I B 0 word_reg_single (i^iDrd_reg_^ingle vhd)
I 0 ^can_reg (^can_reg vhd)
I 10 zerD_le^l (zero_le^l vhd)

0 iD_pads (ID_Pads vhd)

201

1. alu.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;
USE IEEE.std_logic_unsigned.all;

-- ***** adder model *****
-- external ports
ENTITY adder IS PORT (
 A : IN std_logic_vector(15 downto 0);
 B: IN std_logic_vector(15 downto 0);
 alu_op1 : IN std_logic;
 alu_op3 : IN std_logic;
 alu_op4 : IN std_logic;
 Out_word : OUT std_logic_vector(15 downto 0)
);
END adder;

-- internal structure
ARCHITECTURE rtl OF adder IS

-- COMPONENTS

COMPONENT AO22
PORT (
 A : IN std_logic;
 B : IN std_logic;
 C : IN std_logic;
 D : IN std_logic;
 \Out\ : OUT std_logic
);
END COMPONENT;

SIGNAL Vdd : std_logic;
SIGNAL subtract : std_logic;
-- INSTANCES
BEGIN
Vdd <= '1';
AO22_1 : AO22 PORT MAP(
 A => Vdd,
 B => alu_op1,
 C => alu_op4,
 D => alu_op3,
 \Out\ => subtract
);

process (A, B, subtract)
begin
 if (subtract = '1') then
 out_word <= A-B;
 else out_word <= A+B;
 end if;
end process;
END rtl;

202

2. alu.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** alu model *****
-- external ports
ENTITY alu IS PORT (
 A : IN std_logic_vector (15 downto 0);
 alu_op : IN std_logic_vector (4 downto 0);
 alu_out : OUT std_logic_vector (15 downto 0);
 B : IN std_logic_vector (15 downto 0)
);
END alu;

-- internal structure
ARCHITECTURE structural OF alu IS

-- COMPONENTS

COMPONENT adder
PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector (15 downto 0);
 alu_op1 : IN std_logic;
 alu_op3 : IN std_logic;
 alu_op4 : IN std_logic;
 Out_word : OUT std_logic_vector (15 downto 0)
);
END COMPONENT;

COMPONENT alu_logic
PORT (
 A : IN std_logic_vector (15 downto 0);
 B : IN std_logic_vector (15 downto 0);
 Func : IN std_logic_vector (1 downto 0);
 logic_out : OUT std_logic_vector (15 downto 0)
);
END COMPONENT;

COMPONENT log_barrel
PORT (
 ar_or_log : IN std_logic;
 In_Word : IN std_logic_vector (15 downto 0);
 l_or_r : IN std_logic;
 Out_word : OUT std_logic_vector (15 downto 0);
 Shift : IN std_logic_vector (3 downto 0)
);
END COMPONENT;

COMPONENT word_mux4
PORT (
 A : IN std_logic_vector (15 downto 0);
 B : IN std_logic_vector (15 downto 0);
 C : IN std_logic_vector (15 downto 0);
 D : IN std_logic_vector (15 downto 0);
 Sel : IN std_logic_vector (1 downto 0);

203

 Out_word : OUT std_logic_vector (15 downto 0)
);
END COMPONENT;

COMPONENT word_set
PORT (
 In_word : IN std_logic_vector (15 downto 0);
 set_op : IN std_logic_vector (2 downto 0);
 set_out : OUT std_logic
);
END COMPONENT;

-- SIGNALS
SIGNAL set_out : std_logic_vector (15 downto 0);
SIGNAL log_barrel_out : std_logic_vector (15 downto 0);
SIGNAL logic_out : std_logic_vector (15 downto 0);
SIGNAL Adder_Out : std_logic_vector (15 downto 0);

-- INSTANCES
BEGIN
set_out(15 downto 1) <= "000000000000000";
halfword_adder_1 : adder PORT MAP(
 A => A,
 alu_op1 => alu_op(1),
 alu_op3 => alu_op(3),
 alu_op4 => alu_op(4),
 B => B,
 Out_word => Adder_Out
);
halfword_alu_logic_1 : alu_logic PORT MAP(
 A => A,
 B => B,
 Func => alu_op(1 downto 0),
 logic_out => logic_out
);
halfword_log_barrel_1 : log_barrel PORT MAP(
 ar_or_log => alu_op(0),
 In_word => A,
 l_or_r => alu_op(1),
 Out_word => log_barrel_out,
 Shift => B(3 downto 0)
);
halfword_mux4_1 : word_mux4 PORT MAP(
 A => Adder_Out,
 B => logic_out,
 C => log_barrel_out,
 D => set_out,
 Out_word => alu_out,
 Sel => alu_op(4 downto 3)
);
halfword_set_1 : word_set PORT MAP(
 In_word => Adder_Out,
 set_op => alu_op(2 downto 0),
 set_out => set_out(0)
);
END structural;

204

3. alu_logic.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** alu_logic model *****
-- external ports
ENTITY alu_logic IS PORT (
 A: IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 Func: IN std_logic_vector(1 downto 0);
 logic_out : OUT std_logic_vector(15 downto 0)
);
END alu_logic;

-- internal structure
ARCHITECTURE rtl OF alu_logic IS

BEGIN

process (A,B, func)
begin
 case func is
 when "00" => logic_out <= A;
 when "01" => logic_out <= (A and B);
 when "10" => logic_out <= (A or B);
 when others => logic_out <= (A xor B);
 end case;
end process;

END rtl;

4. AO22.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

entity AO22 is port (
 A, B, C, D: IN std_logic;
 \Out\ : OUT std_logic);
end AO22;

architecture behavioral of AO22 is
begin
 \Out\ <= (A and B) or (C and D);
end behavioral;

205

5. core.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;
-- ***** core model *****
-- external ports
ENTITY core IS PORT (
 Addr_Int : OUT std_logic_vector(15 downto 0);
 Clock_in : IN std_logic;
 Input_Data : IN std_logic_vector(15 downto 0);
 Output_Data : Out std_logic_vector(15 downto 0);
 Instr : IN std_logic_vector(23 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 Resetn : IN std_logic;
 Stalln : IN std_logic;
 Wr : OUT std_logic
);
END core;

-- internal structure
ARCHITECTURE structural OF core IS

-- COMPONENTS

COMPONENT alu
PORT (
 A : IN std_logic_vector(15 downto 0);
 alu_op : IN std_logic_vector(4 downto 0);
 alu_out : OUT std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0)
);
END COMPONENT;

COMPONENT word_mux3
PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);
 Out_word : OUT std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END COMPONENT;

COMPONENT word_mux4
PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);
 D : IN std_logic_vector(15 downto 0);
 Out_word : OUT std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END COMPONENT;

206

COMPONENT regfile
PORT (
 A : OUT std_logic_vector(15 downto 0);
 B : OUT std_logic_vector(15 downto 0);
 clock : IN std_logic;
 Data_In : IN std_logic_vector(15 downto 0);
 Dest : IN std_logic_vector(3 downto 0);
 stalln: IN std_logic;
 resetn : IN std_logic;
 RSone : IN std_logic_vector(3 downto 0);
 RStwo : IN std_logic_vector(3 downto 0);
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic;
 wb_enable : IN std_logic
);
END COMPONENT;

COMPONENT word_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(15 downto 0);
 Data_out : OUT std_logic_vector(15 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END COMPONENT;

COMPONENT pc_control
PORT (
 ALU_Out : IN std_logic_vector(15 downto 0);
 Clock : IN std_logic;
 D2_Inc_PC : OUT std_logic_vector(15 downto 0);
 D_Link_PC : OUT std_logic_vector(15 downto 0);
 IAR_Enable : IN std_logic;
 PC : OUT std_logic_vector(15 downto 0);
 PC_Sel : IN std_logic_vector(1 downto 0);
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Data_Out : OUT std_logic;
 Scan_Enable : IN std_logic;
 Stalln : IN std_logic
);
END COMPONENT;

COMPONENT pipeline
PORT (
alu_op : OUT std_logic_vector(4 downto 0);
 A_Mux : OUT std_logic_vector(1 downto 0);
 B_Mux : OUT std_logic_vector(1 downto 0);
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(23 downto 0);
 Dest : OUT std_logic_vector(3 downto 0);
 Immed : OUT std_logic_vector(15 downto 0);
 PC_Sel : OUT std_logic_vector(1 downto 0);

207

 rd_enable : OUT std_logic;
 Reg_In_Sel : OUT std_logic_vector(1 downto 0);
 Resetn : IN std_logic;
 RSone : OUT std_logic_vector(3 downto 0);
 RStwo : OUT std_logic_vector(3 downto 0);
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic;
 Stalln : IN std_logic;
 wb_enable : OUT std_logic;
 scan_out : OUT std_logic;
 IAR_Enable : OUT std_logic;
 wr_enable : OUT std_logic;
 zero_flag : IN std_logic
);
END COMPONENT;

COMPONENT rw_control
PORT (
Clock : IN std_logic;
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 rd_enable : IN std_logic;
 resetn : IN std_logic;
 stalln : IN std_logic;
 Wr : OUT std_logic;
 wr_enable : IN std_logic
);
END COMPONENT;

COMPONENT zero_test
PORT (
 In_word : IN std_logic_vector(15 downto 0);
 zero_flag : OUT std_logic
);
END COMPONENT;

-- SIGNALS

SIGNAL wr_enable : std_logic;
SIGNAL zero_flag : std_logic;
SIGNAL IAR_Enable : std_logic;
SIGNAL wb_enable : std_logic;
SIGNAL pipeline_scan_out : std_logic;
SIGNAL Dest : std_logic_vector(3 downto 0);
SIGNAL A : std_logic_vector(15 downto 0);
SIGNAL D2_Inc_PC : std_logic_vector(15 downto 0);
SIGNAL Immed : std_logic_vector(15 downto 0);
SIGNAL D_ALU_Out : std_logic_vector(15 downto 0);
SIGNAL D_Link_PC : std_logic_vector(15 downto 0);
SIGNAL Reg_In_Sel : std_logic_vector(1 downto 0);
SIGNAL ALU_A : std_logic_vector(15 downto 0);
SIGNAL ALU_Out : std_logic_vector(15 downto 0);
SIGNAL ALU_B : std_logic_vector(15 downto 0);
SIGNAL Gnd : std_logic;
SIGNAL B : std_logic_vector(15 downto 0);
SIGNAL LD_Memory_In : std_logic_vector(15 downto 0);

208

SIGNAL output_en_n : std_logic;
SIGNAL rd_enable : std_logic;
SIGNAL pc_control_scan_out : std_logic;
SIGNAL Buf_Stalln : std_logic;
SIGNAL Buf_resetn : std_logic;
SIGNAL Clock : std_logic;
SIGNAL Buf_Addr_Int : std_logic_vector(15 downto 0);
SIGNAL Shift_En : std_logic;
SIGNAL alu_op : std_logic_vector(4 downto 0);
SIGNAL Buf_Scan_Data_Out : std_logic;
SIGNAL A_Mux : std_logic_vector(1 downto 0);
SIGNAL B_Mux : std_logic_vector(1 downto 0);
SIGNAL RSone : std_logic_vector(3 downto 0);
SIGNAL RStwo : std_logic_vector(3 downto 0);
SIGNAL PC_Sel : std_logic_vector(1 downto 0);
SIGNAL Data_Out : std_logic_vector(15 downto 0);
SIGNAL Regfile_In : std_logic_vector(15 downto 0);
SIGNAL zero_byte : std_logic_vector(7 downto 0);
SIGNAL Data_In : std_logic_vector(15 downto 0);
SIGNAL sign_ext_immed : std_logic_vector(15 downto 0);
SIGNAL scan_data_in : std_logic;
-- INSTANCES
BEGIN
clock <= clock_in;
shift_en <= '0';
scan_data_in <= '0';
Addr_Int <= Buf_Addr_Int;
zero_byte <= "00000000";
sign_ext_immed(15 downto 8) <= Immed(7) & Immed(7) & Immed(7) &

Immed(7) & Immed(7) & Immed(7) & Immed(7) & Immed(7);
sign_ext_immed (7 downto 0) <= Immed(7 downto 0);
Wr <= output_en_n;
Output_Data <= Data_Out;

Word_Reg_1 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => B,
 Data_out => Data_Out,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => pc_control_scan_out,
 Scan_Enable => Shift_En
);

Word_Reg_2 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Input_Data,
 Data_out => LD_Memory_In,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Data_Out(15),
 Scan_Enable => Shift_En
);

209

alu_1 : alu PORT MAP(
 A => ALU_A,
 alu_op => alu_op,
 alu_out => ALU_Out,
 B => ALU_B
);
word_mux3_1 : word_mux3 PORT MAP(
 A => D_ALU_Out,
 B => LD_Memory_In,
 C => D_Link_PC,
 Out_word => Regfile_In,
 Sel => Reg_In_Sel
);
word_mux3_2 : word_mux3 PORT MAP(
 A => B,
 B(7 downto 0) => Immed(7 downto 0),
 B(15 downto 8) => zero_byte,
 C => sign_ext_immed,
 Out_word => ALU_B,
 Sel => B_Mux
);
word_mux4_1 : word_mux4 PORT MAP(
 A => A,
 B => D2_Inc_PC,
 C(7 downto 0) => zero_byte,
 C(15 downto 8) => Immed(7 downto 0),
 D => Immed(15 downto 0),
 Out_word => ALU_A,
 Sel => A_Mux
);
regfile_1 : regfile PORT MAP(
 A => A,
 B => B,
 clock => Clock,
 Data_In => regfile_in,
 Dest => Dest,
 stalln => stalln,
 resetn => resetn,
 RSone => RSone,
 RStwo => RStwo,
 scan_data_in => pipeline_scan_out,
 scan_enable => Shift_En,
 wb_enable => wb_enable
);
word_reg_single_3 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_Addr_Int,
 Data_out => D_ALU_Out,
 Enable => Stalln,
 Resetn => resetn,
 Scan_Data_In => Buf_Addr_Int(15),
 Scan_Enable => Shift_En
);
word_reg_single_4 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => ALU_Out,
 Data_out => Buf_Addr_Int,

210

 Enable => Stalln,
 Resetn => resetn,
 Scan_Data_In => B(15),
 Scan_Enable => Shift_En
);
pc_control_1 : pc_control PORT MAP(
 ALU_Out => ALU_Out,
 Clock => Clock,
 D2_Inc_PC => D2_Inc_PC,
 D_Link_PC => D_Link_PC,
 IAR_Enable => IAR_Enable,
 PC => PC,
 PC_Sel => PC_Sel,
 Resetn => resetn,
 Scan_Data_In => D_ALU_Out(15),
 Scan_Data_Out => pc_control_scan_out,
 Scan_Enable => Shift_En,
 Stalln => Stalln
);
pipeline_1 : pipeline PORT MAP(
 alu_op => alu_op,
 A_Mux => A_Mux,
 B_Mux => B_Mux,
 Clock => Clock,
 Data_In => Instr,
 Dest => Dest,
 Immed => Immed,
 PC_Sel => PC_Sel,
 rd_enable => rd_enable,
 Reg_In_Sel => Reg_In_Sel,
 Resetn => resetn,
 RSone => RSone,
 RStwo => RStwo,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Shift_En,
 Stalln => Stalln,
 wb_enable => wb_enable,
 scan_out => pipeline_scan_out,
 IAR_Enable => IAR_Enable,
 wr_enable => wr_enable,
 zero_flag => zero_flag
);
rw_control_1 : rw_control PORT MAP(
 Clock => Clock,
 Prog_Rd => Prog_Rd,
 Rd => Rd,
 rd_enable => rd_enable,
 resetn => resetn,
 stalln => Stalln,
 Wr => output_en_n,
 wr_enable => wr_enable
);
zero_test_1 : zero_test PORT MAP(
 In_word => A,
 zero_flag => zero_flag
);
END structural;

211

6. Dest_Decoder.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** Dest_Decoder model *****
-- external ports
ENTITY Dest_Decoder IS PORT (
 Dest : IN std_logic_vector(3 downto 0);
 Enable : OUT std_logic_vector(15 downto 1);
 wb_enable : IN std_logic
);
END Dest_Decoder;

-- internal structure
ARCHITECTURE rtl OF Dest_Decoder IS

-- SIGNALS
SIGNAL buf_enable : std_logic_vector(15 downto 1);

-- INSTANCES
BEGIN
with dest select
buf_enable <= "000000000000001" when "0001",
 "000000000000010" when "0010",
 "000000000000100" when "0011",
 "000000000001000" when "0100",
 "000000000010000" when "0101",
 "000000000100000" when "0110",
 "000000001000000" when "0111",
 "000000010000000" when "1000",
 "000000100000000" when "1001",
 "000001000000000" when "1010",
 "000010000000000" when "1011",
 "000100000000000" when "1100",
 "001000000000000" when "1101",
 "010000000000000" when "1110",
 "100000000000000" when others;

Enable <= buf_enable when (wb_enable = '1') else

"000000000000000";
END rtl;

212

7. dlx.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;

-- ***** dlx model *****

-- external ports

ENTITY dlx IS PORT (
 Addr_Int : OUT std_logic_vector(15 downto 0);
 Clock_in : IN std_logic;
 Data : INOUT std_logic_vector(15 downto 0);
 Instr : IN std_logic_vector(23 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 Resetn : IN std_logic;
 Stalln : IN std_logic;
 Wr : OUT std_logic
);
END dlx;

-- internal structure

ARCHITECTURE structural OF dlx IS

-- COMPONENTS
COMPONENT core

PORT (
 Addr_Int : OUT std_logic_vector(15 downto 0);
 Clock_in : IN std_logic;
 Input_Data : IN std_logic_vector(15 downto 0);
 Output_Data : Out std_logic_vector(15 downto 0);
 Instr : IN std_logic_vector(23 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 Resetn : IN std_logic;
 Stalln : IN std_logic;
 Wr : OUT std_logic
);

END COMPONENT;

COMPONENT IO_Pads

PORT (
 Pads : INOUT std_logic_vector (15 downto 0);
 In_Data : OUT std_logic_vector (15 downto 0);
 Out_Data : IN std_logic_vector (15 downto 0);
 Output_En_n : IN std_logic
);
END COMPONENT;

213

-- SIGNALS
signal Input_data : std_logic_vector(15 downto 0);
signal Output_data : std_logic_vector(15 downto 0);
signal wr_int : std_logic;

-- INSTANCES
BEGIN

wr <= wr_int;

core1 : core PORT MAP(
 Addr_Int => Addr_Int,
 Clock_in => Clock_In,
 Input_Data => Input_data,
 Output_Data => Output_data,
 Instr => Instr,
 PC => PC,
 Prog_Rd => Prog_Rd,
 Rd => Rd,
 Resetn => Resetn,
 Stalln => stalln,
 Wr => Wr_int
);

IO_Pads_1 : IO_Pads PORT MAP(
 Pads => Data,
 In_Data => Input_Data,
 Out_Data => Output_Data,
 Output_En_n => wr_int
);

END structural;

8. dlx_out.vhd

-- Test bench shell

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dlx_testbench is end dlx_testbench;

architecture testbench of dlx_testbench is

-- Declaration of the component under test

component DLX

 port (
 Addr_Int : OUT std_logic_vector(15 downto 0);
 Clock_in : IN std_logic;
 Data : INOUT std_logic_vector(15 downto 0);
 Instr : IN std_logic_vector(23 downto 0);
 PC : OUT std_logic_vector(15 downto 0);

214

 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 Resetn : IN std_logic;
 Stalln : IN std_logic;
 Wr : OUT std_logic
);
end component;

signal addr_int : std_logic_vector(15 downto 0);
signal instr : std_logic_vector(23 downto 0);
signal pc : std_logic_vector(15 downto 0);
signal data : std_logic_vector(15 downto 0);
signal resetn : std_logic;
signal prog_rd : std_logic;
signal rd : std_logic;
signal wr : std_logic;
signal stalln : std_logic;
signal clock_in : std_logic;

begin

process --- 10 MHz clock
begin
 clock_in <= '0';

 wait for 25 ns;

 clock_in <= '0';

 wait for 25 ns;

 clock_in <= '1';

 wait for 25 ns;

 clock_in <= '0';

 wait for 25 ns;

end process;

process
begin ---- power up reset process

wait for 1 ns;

resetn <= '0';
stalln <= '1';

wait for 10 ns;

 resetn <= '1';
 wait;

end process;

215

process

begin

wait for 1 ns;

instr <= X"000000"; --- NOP

data <= "ZZZZZZZZZZZZZZZZ";

wait for 100 ns;

instr <= X"080101"; --- LHI R1, #1

wait for 100 ns;

instr <= X"080202"; --- LHI R2, #2

wait for 100 ns;

instr <= X"080303"; --- LHI R3, #3

wait for 100 ns;

instr <= X"080404"; --- LHI R4, #4

wait for 100 ns;

instr <= X"080505"; --- LHI R5, #5

wait for 100 ns;

instr <= X"080606"; --- LHI R6, #6

wait for 100 ns;

instr <= X"080707"; --- LHI R7, #7

wait for 100 ns;

instr <= X"080808"; --- LHI R8, #8

wait for 100 ns;

instr <= X"080909"; --- LHI R9, #9

wait for 100 ns;

instr <= X"080A0A"; --- LHI R10, #10

wait for 100 ns;

instr <= X"080B0B"; --- LHI R11, #11

wait for 100 ns;

instr <= X"080C0C"; --- LHI R12, #12

216

wait for 100 ns;

instr <= X"080D0D"; --- LHI R13, #13

wait for 100 ns;

instr <= X"080E0E"; --- LHI R14, #14

wait for 100 ns;

instr <= X"080F0F"; --- LHI R15, #15

wait for 100 ns;

instr <= X"4111FE"; --- ADDI R1, R1, FE

wait for 100 ns;

instr <= X"2122FD"; --- ADDUI R2, R2, FD

wait for 100 ns;

instr <= X"013340"; --- ADD R3, R3, R4

wait for 100 ns;

instr <= X"4344FF"; --- SUBI R4, R4, FF

wait for 100 ns;

instr <= X"235501"; --- SUBUI R5, R5, #1

wait for 100 ns;

instr <= X"036670"; --- SUB R6, R6, R7

wait for 100 ns;

instr <= X"2977FF"; --- ANDI R7, R7, FF

wait for 100 ns;

instr <= X"098880"; --- AND R8, R8, R9

wait for 100 ns;

instr <= X"2A99FF"; --- ORI R9, R9, FF

wait for 100 ns;

instr <= X"0AAAB0"; --- OR R10, R10, R11

wait for 100 ns;

instr <= X"2BBBF0"; --- XORI R11, R11, F0

217

wait for 100 ns;

instr <= X"0BCCD0"; --- XOR R12, R12, R13

wait for 100 ns;

instr <= X"450100"; --- SW R0, R1

wait for 100 ns;

instr <= X"451200"; --- SW R1, R2

wait for 100 ns;

instr <= X"452300"; --- SW R2, R3

wait for 100 ns;

instr <= X"453400"; --- SW R3, R4

wait for 100 ns;

instr <= X"454500"; --- SW R4, R5

wait for 100 ns;

instr <= X"455600"; --- SW R5, R6

wait for 100 ns;

instr <= X"456700"; --- SW R6, R7

wait for 100 ns;

instr <= X"457800"; --- SW R7, R8

wait for 100 ns;

instr <= X"458900"; --- SW R8, R9

wait for 100 ns;

instr <= X"459A00"; --- SW R9, R10

wait for 100 ns;

instr <= X"45AB00"; --- SW R10, R11

wait for 100 ns;

instr <= X"45BC00"; --- SW R11, R12

wait for 100 ns;

instr <= X"45CD00"; --- SW R12, R13

wait for 100 ns;

218

instr <= X"311104"; --- SLLI R1, R1, #4

wait for 100 ns;

instr <= X"112240"; --- SLL R2, R2, R4

wait for 100 ns;

instr <= X"326304"; --- SRLI R3, R6, #4

wait for 100 ns;

instr <= X"126440"; --- SRL R4,R6,R4

wait for 100 ns;

instr <= X"336504"; --- SRAI R5, R6, #4

wait for 100 ns;

instr <= X"136640"; --- SRA R6, R6, R4

wait for 100 ns;

instr <= X"387701"; --- SEQI R7, R7, #1

wait for 100 ns;

instr <= X"387800"; --- SEQI R8, R7, #0

wait for 100 ns;

instr <= X"3D7900"; --- SNEI R9, R7, #0

wait for 100 ns;

instr <= X"3D7A01"; --- SNEI R10, R7, #1

wait for 100 ns;

instr <= X"1D1B10"; --- SNE R11, R1, R1

wait for 100 ns;

instr <= X"1D1C20"; --- SNE R12, R1, R2

wait for 100 ns;

instr <= X"3C7D00"; --- SLTI R13, R7, #0

wait for 100 ns;

instr <= X"3C7E01"; --- SLTI R13, R7, #0

wait for 100 ns;

219

instr <= X"450100"; --- SW R0, R1

wait for 100 ns;

instr <= X"451200"; --- SW R1, R2

wait for 100 ns;

instr <= X"452300"; --- SW R2, R3

wait for 100 ns;

instr <= X"453400"; --- SW R3, R4

wait for 100 ns;

instr <= X"454500"; --- SW R4, R5

wait for 100 ns;

instr <= X"455600"; --- SW R5, R6

wait for 100 ns;

instr <= X"456700"; --- SW R6, R7

wait for 100 ns;

instr <= X"457800"; --- SW R7, R8

wait for 100 ns;

instr <= X"458900"; --- SW R8, R9

wait for 100 ns;

instr <= X"459A00"; --- SW R9, R10

wait for 100 ns;

instr <= X"45AB00"; --- SW R10, R11

wait for 100 ns;

instr <= X"45BC00"; --- SW R11, R12

wait for 100 ns;

instr <= X"45CD00"; --- SW R12, R13

wait for 100 ns;

instr <= X"45DE00"; --- SW R13, R14

wait for 100 ns;

instr <= X"187180"; --- SEQ R1, R7, R8

220

wait for 100 ns;

instr <= X"187290"; --- SEQ R2, R7, R9

wait for 100 ns;

instr <= X"1C7360"; --- SLT R3, R7, R6

wait for 100 ns;

instr <= X"1C6470"; --- SLT R4, R6, R7

wait for 100 ns;

instr <= X"1A6570"; --- SGT R5, R6, R7

wait for 100 ns;

instr <= X"1A7660"; --- SGT R6, R7, R6

wait for 100 ns;

instr <= X"5A8701"; --- SGTI R8, R7, #1

wait for 100 ns;

instr <= X"5A8800"; --- SGTI R8, R8, 0

wait for 100 ns;

instr <= X"5BB9FF"; --- SLEI R9, R11, FF

wait for 100 ns;

instr <= X"5BBA01"; --- SLEI R10, R11, #1

wait for 100 ns;

instr <= X"5BBB02"; --- SLEI R11, R11, #2

wait for 100 ns;

instr <= X"1B2C10"; --- SLE R12, R2, R1

wait for 100 ns;

instr <= X"1B2D40"; --- SLE R13, R2, R4

wait for 100 ns;

instr <= X"1B1E20"; --- SLE R14, R1, R2

wait for 100 ns;

instr <= X"450100"; --- SW R0, R1

221

wait for 100 ns;

instr <= X"451200"; --- SW R1, R2

wait for 100 ns;

instr <= X"452300"; --- SW R2, R3

wait for 100 ns;

instr <= X"453400"; --- SW R3, R4

wait for 100 ns;

instr <= X"454500"; --- SW R4, R5

wait for 100 ns;

instr <= X"455600"; --- SW R5, R6

wait for 100 ns;

instr <= X"456700"; --- SW R6, R7

wait for 100 ns;

instr <= X"457800"; --- SW R7, R8

wait for 100 ns;

instr <= X"458900"; --- SW R8, R9

wait for 100 ns;

instr <= X"459A00"; --- SW R9, R10

wait for 100 ns;

instr <= X"45AB00"; --- SW R10, R11

wait for 100 ns;

instr <= X"45BC00"; --- SW R11, R12

wait for 100 ns;

instr <= X"45CD00"; --- SW R12, R13

wait for 100 ns;

instr <= X"45DE00"; --- SW R13, R14

wait for 100 ns;

instr <= X"191120"; --- SGE R1, R1, R2

wait for 100 ns;

222

instr <= X"192210"; --- SGE R2, R2, R1

wait for 100 ns;

instr <= X"192320"; --- SGE R3, R2, R2

wait for 100 ns;

instr <= X"595402"; --- SGEI R4, R5, #02

wait for 100 ns;

instr <= X"5955FF"; --- SGEI R5, R5, FF

wait for 100 ns;

instr <= X"596500"; --- SGEI R6, R5, #0

wait for 100 ns;

instr <= X"450100"; --- SW R0, R1

wait for 100 ns;

instr <= X"451200"; --- SW R1, R2

wait for 100 ns;

instr <= X"452300"; --- SW R2, R3

wait for 100 ns;

instr <= X"453400"; --- SW R3, R4

wait for 100 ns;

instr <= X"454500"; --- SW R4, R5

wait for 100 ns;

instr <= X"455600"; --- SW R5, R6

wait for 100 ns;

instr <= X"C800FF"; --- J 0x00FF

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

223

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"E88000"; --- JAL 0x8000

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"450F00"; --- SW R0, R15

wait for 100 ns;

instr <= X"C1200F"; --- BEQZ R2, 0x0F

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

 instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"C1000F"; --- BEQZ R0, 0x0F

wait for 100 ns;

instr <= X"000000"; --- NOP

224

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

 instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"C0000F"; --- BNEZ R0, 0x0F

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

 instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"C0200F"; --- BNEZ R2, 0x0F

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

 instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"48F000"; --- JR R15

225

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

 instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"68F000"; --- JALR R15

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

 instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"450F00"; --- SW R0, R15

wait for 100 ns;

instr <= X"28FF00"; --- TRAP FF00

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

226

 instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"F80000"; --- RFE

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

 instr <= X"000000"; --- NOP

wait for 100 ns;

DATA <= X"FFF1";

instr <= X"440100"; --- LW R0(0), R1

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

DATA <= "ZZZZZZZZZZZZZZZZ";

instr <= X"000000"; --- NOP

wait for 100 ns;

227

instr <= X"450100"; ---- SW R0(0), R1

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

instr <= X"000000"; --- NOP

wait for 100 ns;

end process;

-- Place stimulus and analysis statements here

dut : DLX port map (
 Instr => Instr,
 Addr_int => addr_int,
 PC => PC,
 Data => data,
 Resetn => resetn,
 Prog_Rd => prog_rd,
 Rd => rd,
 Wr => wr,
 Stalln => stalln,
 Clock_in => clock_in
);

end testbench;

228

9. increment.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;

-- ***** dlx model *****
-- external ports

ENTITY dlx IS PORT (
 Addr_Int : OUT std_logic_vector(15 downto 0);
 Clock_in : IN std_logic;
 Data : INOUT std_logic_vector(15 downto 0);
 Instr : IN std_logic_vector(23 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 Resetn : IN std_logic;
 Stalln : IN std_logic;
 Wr : OUT std_logic
);

END dlx;
-- internal structure

ARCHITECTURE structural OF dlx IS

-- COMPONENTS

COMPONENT core
PORT (
 Addr_Int : OUT std_logic_vector(15 downto 0);
 Clock_in : IN std_logic;
 Input_Data : IN std_logic_vector(15 downto 0);
 Output_Data : Out std_logic_vector(15 downto 0);
 Instr : IN std_logic_vector(23 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 Resetn : IN std_logic;
 Stalln : IN std_logic;
 Wr : OUT std_logic
);
END COMPONENT;

COMPONENT IO_Pads
PORT (
 Pads : INOUT std_logic_vector (15 downto 0);
 In_Data : OUT std_logic_vector (15 downto 0);
 Out_Data : IN std_logic_vector (15 downto 0);
 Output_En_n : IN std_logic
);
END COMPONENT;

-- SIGNALS

229

signal Input_data : std_logic_vector(15 downto 0);
signal Output_data : std_logic_vector(15 downto 0);
signal wr_int : std_logic;

-- INSTANCES
BEGIN

wr <= wr_int;

core1 : core PORT MAP(
 Addr_Int => Addr_Int,
 Clock_in => Clock_In,
 Input_Data => Input_data,
 Output_Data => Output_data,
 Instr => Instr,
 PC => PC,
 Prog_Rd => Prog_Rd,
 Rd => Rd,
 Resetn => Resetn,
 Stalln => stalln,
 Wr => Wr_int
);

IO_Pads_1 : IO_Pads PORT MAP(
 Pads => Data,
 In_Data => Input_Data,
 Out_Data => Output_Data,
 Output_En_n => wr_int
);

END structural;

10. IO_Pads.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

---- *** IO_Pads Model ***
---- external ports

Entity IO_Pads is PORT (
 Pads : INOUT std_logic_vector (15 downto 0);
 In_Data : Out std_logic_vector (15 downto 0);
 Out_Data : In std_logic_vector (15 downto 0);
 Output_En_n : IN std_logic
);
END IO_Pads;

Architecture Behavior of IO_Pads is
Begin
 --In_Data <= Pads;
 Pads <= Out_Data when Output_En_n = '0' else (Pads'range =>

'Z');
 In_Data <= Pads;
end Behavior;

230

11. log_barrel.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** log_barrel model *****
-- external ports
ENTITY log_barrel IS PORT (
 ar_or_log : IN std_logic;
 In_word : IN std_logic_vector(15 downto 0);
 l_or_r : IN std_logic;
 Out_word : Out std_logic_vector(15 downto 0);
 Shift: IN std_logic_vector(3 downto 0)
);
END log_barrel;

-- internal structure
ARCHITECTURE rtl OF log_barrel IS
signal sel1, sel2, sel3, sel4 : std_logic_vector (1 downto 0);
signal buf0b, buf0c, buf0d : std_logic_vector (15 downto 0);
signal buf1a, buf1b, buf1c, buf1d : std_logic_vector (15 downto

0);
signal buf2a, buf2b, buf2c, buf2d : std_logic_vector (15 downto

0);
signal buf3a, buf3b, buf3c, buf3d : std_logic_vector (15 downto

0);

component word_mux4
port (a : in std_logic_vector (15 downto 0);
 b : in std_logic_vector (15 downto 0);
 c : in std_logic_vector (15 downto 0);
 d : in std_logic_vector (15 downto 0);
 sel : in std_logic_vector (1 downto 0);
 out_word : out std_logic_vector (15 downto 0)
);
end component;

begin
sel1(1) <= l_or_r and shift(0);
sel1(0) <= ar_or_log and shift(0);

sel2(1) <= l_or_r and shift(1);
sel2(0) <= ar_or_log and shift(1);

sel3(1) <= l_or_r and shift(2);
sel3(0) <= ar_or_log and shift(2);

sel4(1) <= l_or_r and shift(3);
sel4(0) <= ar_or_log and shift(3);

buf0b <= in_word(14 downto 0) & "0";
buf0c <= "0" & in_word(15 downto 1);
buf0d <= in_word(15) & in_word(15 downto 1);

buf1b <= buf1a(13 downto 0) & "00";
buf1c <= "00" & buf1a(15 downto 2);

231

buf1d <= buf1a(15) & buf1a(15) & buf1a(15 downto 2);

buf2b <= buf2a(11 downto 0) & "0000";
buf2c <= "0000" & buf2a(15 downto 4);
buf2d <= buf2a(15) & buf2a(15) & buf2a(15) & buf2a(15) & buf2a(15

downto 4);

buf3b <= buf3a(7 downto 0) & "00000000";
buf3c <= "00000000" & buf3a(15 downto 8);
buf3d <= buf3a(15) & buf3a(15) & buf3a(15) & buf3a(15) &

buf3a(15) & buf3a(15) & buf3a(15) & buf3a(15) & buf3a(15 downto 8);

mux1: word_mux4
port map (
 a => in_word,
 b => buf0b,
 c => buf0c,
 d => buf0d,
 sel => sel1,
 out_word => buf1a
);
mux2: word_mux4
port map (
 a => buf1a,
 b => buf1b,
 c => buf1c,
 d => buf1d,
 sel => sel2,
 out_word => buf2a
);

mux3: word_mux4
port map (
 a => buf2a,
 b => buf2b,
 c => buf2c,
 d => buf2d,
 sel => sel3,
 out_word => buf3a
);

mux4: word_mux4
port map (
 a => buf3a,
 b => buf3b,
 c => buf3c,
 d => buf3d,
 sel => sel4,
 out_word => out_word);

end rtl;

232

12. pc_control.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** pc_control model *****
-- external ports
ENTITY pc_control IS PORT (
 ALU_Out : IN std_logic_vector(15 downto 0);
 Clock : IN std_logic;
 D2_Inc_PC : OUT std_logic_vector(15 downto 0);
 D_Link_PC : OUT std_logic_vector(15 downto 0);
 IAR_Enable : IN std_logic;
 In_PC : OUT std_logic_vector(15 downto 0);
 PC : OUT std_logic_vector(15 downto 0);
 PC_Sel : IN std_logic_vector(1 downto 0);
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Data_Out : OUT std_logic;
 Scan_Enable : IN std_logic;
 Stalln : IN std_logic
);
END pc_control;

-- internal structure
ARCHITECTURE structural OF pc_control IS

-- COMPONENTS
COMPONENT word_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(15 downto 0);
 Data_out : OUT std_logic_vector(15 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END COMPONENT;

COMPONENT word_mux3
PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);
 Out_word : OUT std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END COMPONENT;

COMPONENT increment
PORT (
 CI : IN std_logic;
 In_word : IN std_logic_vector(15 downto 0);
 Out_word : OUT std_logic_vector(15 downto 0)
);
END COMPONENT;

233

-- SIGNALS

SIGNAL IAR : std_logic_vector(15 downto 0);
SIGNAL PC_Incr : std_logic_vector(15 downto 0);
SIGNAL Buf_In_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_Scan_Data_Out : std_logic;
SIGNAL Buf_D1_Inc_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_D2_Inc_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_D_Link_PC : std_logic_vector(15 downto 0);
SIGNAL Link_PC : std_logic_vector(15 downto 0);
SIGNAL Buf_Link_PC : std_logic_vector(15 downto 0);

-- INSTANCES
BEGIN
In_PC <= Buf_In_PC;
PC <= Buf_PC;
D2_Inc_PC <= Buf_D2_Inc_PC;
D_Link_PC <= Buf_D_Link_PC;
Scan_Data_Out <= IAR(15);

halfword_reg_single_1 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_In_PC,
 Data_out => Buf_PC,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Scan_Enable
);
halfword_mux3_1 : word_mux3 PORT MAP(
 A => PC_Incr,
 B => ALU_Out,
 C => IAR,
 Out_word => Buf_In_PC,
 Sel => PC_Sel
);
halfword_increment_1 : increment PORT MAP(
 CI => '1',
 In_word => Buf_PC,
 Out_word => PC_Incr
);
halfword_reg_single_2 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => PC_Incr,
 Data_out => Buf_D1_Inc_PC,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Buf_PC(15),
 Scan_Enable => Scan_Enable
);
halfword_reg_single_3 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_D1_Inc_PC,
 Data_out => Buf_D2_Inc_PC,
 Enable => Stalln,

234

 Resetn => Resetn,
 Scan_Data_In => Buf_D1_Inc_PC(15),
 Scan_Enable => Scan_Enable
);
halfword_increment_2 : increment PORT MAP(
 CI => '1',
 In_word(0) => '1',
 In_word(15 downto 1) => Buf_D2_Inc_PC(15 downto 1),
 Out_word(15 downto 0) => Link_PC(15 downto 0)
);
halfword_reg_single_4 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In(0) => Buf_D2_Inc_PC(0),
 Data_In(15 downto 1) => Link_PC(15 downto 1),
 Data_out => Buf_Link_PC,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Buf_D2_Inc_PC(15),
 Scan_Enable => Scan_Enable
);
halfword_reg_single_5 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_Link_PC,
 Data_Out => Buf_D_Link_PC,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Buf_Link_PC(15),
 Scan_Enable => Scan_Enable
);
halfword_reg_single_6 : word_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Buf_D_Link_PC,
 Data_out => IAR,
 Enable => IAR_Enable,
 Resetn => Resetn,
 Scan_Data_In => Buf_D_Link_PC(15),
 Scan_Enable => Scan_Enable
);
END structural;

13. pipeline.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** pipeline model *****
-- external ports
ENTITY pipeline IS PORT (
 alu_op : OUT std_logic_vector(4 downto 0);
 A_Mux : OUT std_logic_vector(1 downto 0);
 B_Mux : OUT std_logic_vector(1 downto 0);
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(23 downto 0);
 Dest : OUT std_logic_vector(3 downto 0);
 Immed : OUT std_logic_vector(15 downto 0);
 PC_Sel : OUT std_logic_vector(1 downto 0);

235

 rd_enable : OUT std_logic;
 Reg_In_Sel : OUT std_logic_vector(1 downto 0);
 Resetn : IN std_logic;
 RSone : OUT std_logic_vector(3 downto 0);
 RStwo : OUT std_logic_vector(3 downto 0);
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic;
 Stalln : IN std_logic;
 wb_enable : OUT std_logic;
 scan_out : OUT std_logic;
 IAR_Enable : OUT std_logic;
 wr_enable : OUT std_logic;
 zero_flag : IN std_logic
);
END pipeline;

-- internal structure
ARCHITECTURE rtl OF pipeline IS

-- COMPONENTS

COMPONENT twelve_bit_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(11 downto 0);
 Data_out : OUT std_logic_vector(11 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END COMPONENT;

COMPONENT twenty_four_bit_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(23 downto 0);
 Data_out : OUT std_logic_vector(23 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END COMPONENT;

-- SIGNALS
SIGNAL Dec_Instr : std_logic_vector (23 downto 0);
SIGNAL Ex_Instr : std_logic_vector (23 downto 0);
SIGNAL Mem_Instr : std_logic_vector (11 downto 0);
SIGNAL WB_Instr : std_logic_vector (11 downto 0);

-- INSTANCES
BEGIN

----- ****** decode pipeline stage *********

236

twenty_bit_reg_single_1 : twenty_four_bit_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Data_In,
 Data_out => Dec_Instr,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Scan_Enable
);

process (Dec_Instr)
begin
RSone <= Dec_Instr(15 downto 12);

---- assign RS2 (check for SW instruction)
if (Dec_Instr(23 downto 16) = X"45") then
 RStwo <= Dec_Instr(11 downto 8) ;
else RStwo <= Dec_Instr(7 downto 4);
end if;
end process;
------ ****** execute pipeline stage **********

twenty_four_bit_reg_single_2 : twenty_four_bit_reg_single PORT

MAP(
 Clock => Clock,
 Data_In => Dec_Instr,
 Data_out => Ex_Instr,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Dec_Instr(23),
 Scan_Enable => Scan_Enable
);

Immed <= Ex_Instr(15 downto 0); ---- assign immediate value
alu_op <= Ex_Instr(20 downto 16); ---- assign alu opcodes
b_mux <= Ex_Instr(22 downto 21); --- assign b_mux

PC_Sel <= "01" when Ex_Instr(23 downto 16) = X"C8" else -----

when OP_J
 "01" when Ex_Instr(23 downto 16) = X"E8" else -----

when OP_JAL
 "0" & zero_flag when Ex_Instr(23 downto 16) = X"C1"

else ---when OP_BEQZ
 "0" & not(zero_flag) when Ex_Instr(23 downto 16) =

X"C0" else ---when OP_BEQZ
 "10" when Ex_Instr(23 downto 16) = X"F8" else ---OP_RFE
 "01" when Ex_Instr(23 downto 16) = X"28" else ----

OP_TRAP
 "01" when Ex_Instr(23 downto 16) = X"48" else ----

OP_JR
 "01" when Ex_Instr(23 downto 16) = X"68" else ----

OP_JALR
 "00";

process (Ex_Instr)

237

begin

case Ex_Instr(23 downto 16) is
 when X"C8" => ----- when OP_J
 A_Mux <= "11";
 when X"E8" => ----- when OP_JAL
 A_Mux <= "11";
 when X"C1" => ----- when OP_BEQZ
 A_Mux <= "01";
 when X"C0" => ----- when OP_BNEZ
 A_Mux <= "01";
 when X"08" => ----- when OP_LHI
 A_Mux <= "10";
 when X"F8" => ----- when OP_RFE
 A_Mux <= "00";
 when X"28" => ----- when OP_TRAP
 A_Mux <= "11";
 when X"48" => ----- when OP_JR
 A_Mux <= "00";
 when X"68" => ----- when OP_JALR
 A_Mux <= "00";
 when others => ----- OTHERS
 A_Mux <= "00";
end case;
end process;

------ ***** memory stage of pipeline ******* -----------

twelve_bit_reg_single_1 : twelve_bit_reg_single PORT MAP(
 Clock => Clock,
 Data_In(11 downto 4) => Ex_Instr(23 downto 16),
 Data_In(3 downto 0) => Ex_Instr(11 downto 8),
 Data_out => Mem_Instr,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Ex_Instr(23),
 Scan_Enable => Scan_Enable
);

process (Mem_Instr)
begin
case Mem_Instr(11 downto 4) is
 when X"45" =>
 rd_enable <= '0'; ----- OP_SW (write)
 wr_enable <= '1';
 when X"44" => ------ OP_LW (read)
 rd_enable <= '1';
 wr_enable <= '0';
 when others =>
 rd_enable <= '0';
 wr_enable <= '0';
end case;
end process;

------ ******** write back stage ********
twelve_bit_reg_single_2 : twelve_bit_reg_single PORT MAP(
 Clock => Clock,

238

 Data_In => Mem_Instr,
 Data_out => WB_Instr,
 Enable => Stalln,
 Resetn => Resetn,
 Scan_Data_In => Mem_Instr(11),
 Scan_Enable => Scan_Enable
);

scan_out <= WB_Instr(11);
process (WB_Instr)
begin

---- check for Jump and Link Instructions to set Reg_In_Sel(0) =

0
 if (WB_Instr(11 downto 4) = X"E8" or WB_Instr(11 downto 4) =

X"68") then
 Reg_In_Sel(1) <= '1';
 Dest <= "1111";
 else Reg_In_Sel(1) <= '0';
 Dest <= WB_Instr(3 downto 0);
 end if;

---- check for TRAP to set IAR_Enable = 1
 if (WB_Instr(11 downto 4) = X"28") then
 IAR_Enable <= '1';
 else IAR_Enable <= '0';
 end if;

---- check for LW to set Reg_In_Sel(1) = 1
 if (WB_Instr(11 downto 4) = X"44") then
 Reg_In_Sel(0) <= '1';
 else Reg_In_Sel(0) <= '0';
 end if;

------ set write_back enable
 case WB_Instr(11 downto 4) is
 when X"C8" => ----- when OP_J
 WB_Enable <= '0';
 when X"C1" => ----- when OP_BEQZ
 WB_Enable <= '0';
 when X"C0" => ----- when OP_BNEZ
 WB_Enable <= '0';
 when X"45" => ----- when OP_SW
 WB_Enable <= '0';
 when X"F8" => ----- when OP_RFE
 WB_Enable <= '0';
 when X"28" => ----- when OP_TRAP
 WB_Enable <= '0';
 when X"48" => ----- when OP_JR
 WB_Enable <= '0';
 when X"00" => ----- when OP_NOP
 WB_Enable <= '0';
 when others =>
 WB_Enable <= '1';
 end case;
end process;
END rtl;

239

14. regfile.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-----******* regfile model ***********
---- external ports
ENTITY regfile IS PORT (
 A : OUT std_logic_vector(15 downto 0);
 B : OUT std_logic_vector(15 downto 0);
 clock : IN std_logic;
 Data_In : IN std_logic_vector(15 downto 0);
 Dest : IN std_logic_vector(3 downto 0);
 stalln : IN std_logic;
 RSone : IN std_logic_vector(3 downto 0);
 RStwo : IN std_logic_vector(3 downto 0);
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic;
 Resetn : IN std_logic;
 wb_enable : IN std_logic
);
END regfile;

---- internal structure
ARCHITECTURE structural OF regfile is

---- COMPONENTS
COMPONENT Dest_Decoder
PORT (
 Dest : IN std_logic_vector(3 downto 0);
 Enable : OUT std_logic_vector(15 downto 1);
 wb_enable : IN std_logic
);
END COMPONENT;

COMPONENT word_reg_single
PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector (15 downto 0);
 Data_out : OUT std_logic_vector (15 downto 0);
 enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END COMPONENT;

COMPONENT word_mux16
PORT (
 In_Word0 : IN std_logic_vector(15 downto 0);
 In_Word1 : IN std_logic_vector(15 downto 0);
 In_Word2 : IN std_logic_vector(15 downto 0);
 In_Word3 : IN std_logic_vector(15 downto 0);
 In_Word4 : IN std_logic_vector(15 downto 0);
 In_Word5 : IN std_logic_vector(15 downto 0);
 In_Word6 : IN std_logic_vector(15 downto 0);
 In_Word7 : IN std_logic_vector(15 downto 0);

240

 In_Word8 : IN std_logic_vector(15 downto 0);
 In_Word9 : IN std_logic_vector(15 downto 0);
 In_Word10 : IN std_logic_vector(15 downto 0);
 In_Word11 : IN std_logic_vector(15 downto 0);
 In_Word12 : IN std_logic_vector(15 downto 0);
 In_Word13 : IN std_logic_vector(15 downto 0);
 In_Word14 : IN std_logic_vector(15 downto 0);
 In_Word15 : IN std_logic_vector(15 downto 0);
 Out_word : Out std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(3 downto 0)
);
END component;

----- signals
signal Enable : std_logic_vector(15 downto 1);
signal Reg1_Data : std_logic_vector(15 downto 0);
signal Reg2_Data : std_logic_vector(15 downto 0);
signal Reg3_Data : std_logic_vector(15 downto 0);
signal Reg4_Data : std_logic_vector(15 downto 0);
signal Reg5_Data : std_logic_vector(15 downto 0);
signal Reg6_Data : std_logic_vector(15 downto 0);
signal Reg7_Data : std_logic_vector(15 downto 0);
signal Reg8_Data : std_logic_vector(15 downto 0);
signal Reg9_Data : std_logic_vector(15 downto 0);
signal Reg10_Data : std_logic_vector(15 downto 0);
signal Reg11_Data : std_logic_vector(15 downto 0);
signal Reg12_Data : std_logic_vector(15 downto 0);
signal Reg13_Data : std_logic_vector(15 downto 0);
signal Reg14_Data : std_logic_vector(15 downto 0);
signal Reg15_Data : std_logic_vector(15 downto 0);
signal RegA_Data : std_logic_vector(15 downto 0);
signal MuxA_Data : std_logic_vector(15 downto 0);
signal MuxB_Data : std_logic_vector(15 downto 0);
signal zero_word : std_logic_vector(15 downto 0);

begin

zero_word <= "0000000000000000";

---- port maps

Dest_Decoder1 : Dest_Decoder PORT MAP (
 Dest=> Dest,
 Enable => Enable,
 wb_enable => wb_enable
);
word_reg1 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg1_Data,
 Enable => Enable(1),
 Resetn => Resetn,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Scan_Enable
);

241

word_reg2 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg2_Data,
 Enable => Enable(2),
 Resetn => Resetn,
 Scan_Data_In => Reg1_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg3 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg3_Data,
 Enable => Enable(3),
 Resetn => Resetn,
 Scan_Data_In => Reg2_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg4 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg4_Data,
 Enable => Enable(4),
 Resetn => Resetn,
 Scan_Data_In => Reg3_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg5 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg5_Data,
 Enable => Enable(5),
 Resetn => Resetn,
 Scan_Data_In => Reg4_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg6 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg6_Data,
 Enable => Enable(6),
 Resetn => Resetn,
 Scan_Data_In => Reg5_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg7 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg7_Data,
 Enable => Enable(7),
 Resetn => Resetn,
 Scan_Data_In => Reg6_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg8 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,

242

 Data_out => Reg8_Data,
 Enable => Enable(8),
 Resetn => Resetn,
 Scan_Data_In => Reg7_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg9 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg9_Data,
 Enable => Enable(9),
 Resetn => Resetn,
 Scan_Data_In => Reg8_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg10 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg10_Data,
 Enable => Enable(10),
 Resetn => Resetn,
 Scan_Data_In => Reg9_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg11 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg11_Data,
 Enable => Enable(11),
 Resetn => Resetn,
 Scan_Data_In => Reg10_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg12 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg12_Data,
 Enable => Enable(12),
 Resetn => Resetn,
 Scan_Data_In => Reg11_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg13 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg13_Data,
 Enable => Enable(13),
 Resetn => Resetn,
 Scan_Data_In => Reg12_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg14 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg14_Data,
 Enable => Enable(14),
 Resetn => Resetn,

243

 Scan_Data_In => Reg13_Data(15),
 Scan_Enable => Scan_Enable
);
word_reg15 : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => Data_In,
 Data_out => Reg15_Data,
 Enable => Enable(15),
 Resetn => Resetn,
 Scan_Data_In => Reg14_Data(15),
 Scan_Enable => Scan_Enable
);
word_regA : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => MuxA_Data,
 Data_out => RegA_Data,
 Enable => stalln,
 Resetn => Resetn,
 Scan_Data_In => Reg15_Data(15),
 Scan_Enable => Scan_Enable
);

A <= RegA_Data;

word_regB : word_reg_single PORT MAP (
 Clock => clock,
 Data_In => MuxB_Data,
 Data_out => B,
 Enable => stalln,
 Resetn => Resetn,
 Scan_Data_In => RegA_Data(15),
 Scan_Enable => Scan_Enable
);
MuxA : word_mux16 PORT MAP (
 In_Word0 => zero_word,
 In_Word1 => Reg1_Data,
 In_Word2 => Reg2_Data,
 In_Word3 => Reg3_Data,
 In_Word4 => Reg4_Data,
 In_Word5 => Reg5_Data,
 In_Word6 => Reg6_Data,
 In_Word7 => Reg7_Data,
 In_Word8 => Reg8_Data,
 In_Word9 => Reg9_Data,
 In_Word10 => Reg10_Data,
 In_Word11 => Reg11_Data,
 In_Word12 => Reg12_Data,
 In_Word13 => Reg13_Data,
 In_Word14 => Reg14_Data,
 In_Word15 => Reg15_Data,
 Out_word => MuxA_Data,
 Sel => RSone
);
MuxB : word_mux16 PORT MAP (
 In_Word0 => zero_word,
 In_Word1 => Reg1_Data,
 In_Word2 => Reg2_Data,

244

 In_Word3 => Reg3_Data,
 In_Word4 => Reg4_Data,
 In_Word5 => Reg5_Data,
 In_Word6 => Reg6_Data,
 In_Word7 => Reg7_Data,
 In_Word8 => Reg8_Data,
 In_Word9 => Reg9_Data,
 In_Word10 => Reg10_Data,
 In_Word11 => Reg11_Data,
 In_Word12 => Reg12_Data,
 In_Word13 => Reg13_Data,
 In_Word14 => Reg14_Data,
 In_Word15 => Reg15_Data,
 Out_word => MuxB_Data,
 Sel => RStwo
);

END structural;

15. rw_control.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** rw_control model *****
-- external ports
ENTITY rw_control IS PORT (
 Clock : IN std_logic;
 Prog_Rd : OUT std_logic;
 Rd : OUT std_logic;
 rd_enable : IN std_logic;
 resetn : IN std_logic;
 stalln : IN std_logic;
 Wr : OUT std_logic;
 wr_enable : IN std_logic
);
END rw_control;

-- internal structure
ARCHITECTURE rtl OF rw_control IS

-- SIGNALS
SIGNAL clockn : std_logic; --- inverted clock

BEGIN
clockn <= not(Clock);
Wr <= not (clockn and wr_enable);
Rd <= not (clockn and rd_enable);
Prog_Rd <= not (clockn and resetn and stalln);
end rtl;

245

16. scan_reg.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** scan_reg model *****
-- external ports

ENTITY scan_reg IS PORT (
 clk : IN std_logic;
 data_in : IN std_logic;
 data_out : OUT std_logic;
 enable : IN std_logic;
 resetn : IN std_logic;
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic
);
END scan_reg;

-- internal structure

ARCHITECTURE rtl OF scan_reg IS

-- INSTANCES
BEGIN

process (clk, resetn)
begin
if (resetn = '0') then
 data_out <= '0';
elsif (clk = '1' and clk'event) then
 if (scan_enable = '1') then
 data_out <= scan_data_in;
 elsif (enable = '1') then
 data_out <= data_in;
 end if;
 end if;
end process;

END rtl;

17. twelve_bit_reg_single.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** twelve_bit_reg_single model *****
-- external ports
ENTITY twelve_bit_reg_single IS PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(11 downto 0);
 Data_out : OUT std_logic_vector(11 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic

246

);
END twelve_bit_reg_single;

-- internal structure
ARCHITECTURE structural OF twelve_bit_reg_single IS

-- COMPONENTS
COMPONENT scan_reg
PORT (
 clk : IN std_logic;
 data_in : IN std_logic;
 data_out : OUT std_logic;
 enable : IN std_logic;
 resetn : IN std_logic;
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic
);
END COMPONENT;

-- SIGNALS
signal buf_data_out : std_logic_vector (10 downto 0);

-- INSTANCES
BEGIN
Data_out(0) <= buf_data_out(0);
Data_out(1) <= buf_data_out(1);
Data_out(2) <= buf_data_out(2);
Data_out(3) <= buf_data_out(3);
Data_out(4) <= buf_data_out(4);
Data_out(5) <= buf_data_out(5);
Data_out(6) <= buf_data_out(6);
Data_out(7) <= buf_data_out(7);
Data_out(8) <= buf_data_out(8);
Data_out(9) <= buf_data_out(9);
Data_out(10) <= buf_data_out(10);

scan_reg_1 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(1),
 data_out => buf_data_out(1),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(0),
 scan_enable => Scan_Enable
);
scan_reg_2 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(2),
 data_out => buf_data_out(2),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(1),
 scan_enable => Scan_Enable
);
scan_reg_3 : scan_reg PORT MAP(
 clk => Clock,

247

 data_in => Data_In(3),
 data_out => buf_data_out(3),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(2),
 scan_enable => Scan_Enable
);
scan_reg_4 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(4),
 data_out => buf_data_out(4),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(3),
 scan_enable => Scan_Enable
);
scan_reg_5 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(0),
 data_out => buf_data_out(0),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Scan_Data_In,
 scan_enable => Scan_Enable
);
scan_reg_6 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(5),
 data_out => buf_data_out(5),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(4),
 scan_enable => Scan_Enable
);
scan_reg_7 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(6),
 data_out => buf_data_out(6),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(5),
 scan_enable => Scan_Enable
);
scan_reg_8 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(7),
 data_out => buf_data_out(7),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(6),
 scan_enable => Scan_Enable
);
scan_reg_9 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(8),
 data_out => buf_data_out(8),
 enable => Enable,

248

 resetn => Resetn,
 scan_data_in => buf_data_out(7),
 scan_enable => Scan_Enable
);
scan_reg_10 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(9),
 data_out => buf_data_out(9),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(8),
 scan_enable => Scan_Enable
);
scan_reg_11 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(10),
 data_out => buf_data_out(10),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(9),
 scan_enable => Scan_Enable
);

scan_reg_12 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(11),
 data_out => Data_out(11),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => buf_data_out(10),
 scan_enable => Scan_Enable
);
END structural;

18. twenty_four_bit_reg_single.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** twenty_four_bit_reg_single model *****
-- external ports
ENTITY twenty_four_bit_reg_single IS PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector (23 downto 0);
 Data_out : OUT std_logic_vector (23 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END twenty_four_bit_reg_single;

-- internal structure
ARCHITECTURE structural OF twenty_four_bit_reg_single IS

249

-- COMPONENTS

Component twelve_bit_reg_single
 PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector(11 downto 0);
 Data_out : OUT std_logic_vector(11 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END Component;

-- SIGNALS
SIGNAL Buf_Data_out11 : std_logic;

-- INSTANCES
BEGIN
Data_out(11) <= Buf_Data_out11;

twelve_bit_reg_single1 : twelve_bit_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Data_In(11 downto 0),
 Data_Out(10 downto 0) => Data_Out(10 downto 0),
 Data_Out(11) => Buf_Data_out11,
 Enable => Enable,
 Resetn => Resetn,
 Scan_Data_In => Scan_Data_In,
 Scan_Enable => Scan_Enable
);
twelve_bit_reg_single2 : twelve_bit_reg_single PORT MAP(
 Clock => Clock,
 Data_In => Data_In(23 downto 12),
 Data_Out => Data_Out(23 downto 12),
 Enable => Enable,
 Resetn => Resetn,
 Scan_Data_In => Buf_Data_out11,
 Scan_Enable => Scan_Enable
);
END structural;

19. word_mux16.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_mux16 model *****
-- external ports

ENTITY word_mux16 IS PORT (
 In_Word0 : IN std_logic_vector(15 downto 0);

250

 In_Word1 : IN std_logic_vector(15 downto 0);
 In_Word2 : IN std_logic_vector(15 downto 0);
 In_Word3 : IN std_logic_vector(15 downto 0);
 In_Word4 : IN std_logic_vector(15 downto 0);
 In_Word5 : IN std_logic_vector(15 downto 0);
 In_Word6 : IN std_logic_vector(15 downto 0);
 In_Word7 : IN std_logic_vector(15 downto 0);
 In_Word8 : IN std_logic_vector(15 downto 0);
 In_Word9 : IN std_logic_vector(15 downto 0);
 In_Word10 : IN std_logic_vector(15 downto 0);
 In_Word11 : IN std_logic_vector(15 downto 0);
 In_Word12 : IN std_logic_vector(15 downto 0);
 In_Word13 : IN std_logic_vector(15 downto 0);
 In_Word14 : IN std_logic_vector(15 downto 0);
 In_Word15 : IN std_logic_vector(15 downto 0);
 Out_word : Out std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(3 downto 0)
);
END word_mux16;

-- internal structure
ARCHITECTURE rtl OF word_mux16 IS

BEGIN
with sel select
 Out_word <= In_Word0 when "0000",
 In_Word1 when "0001",
 In_Word2 when "0010",
 In_Word3 when "0011",
 In_Word4 when "0100",
 In_Word5 when "0101",
 In_Word6 when "0110",
 In_Word7 when "0111",
 In_Word8 when "1000",
 In_Word9 when "1001",
 In_Word10 when "1010",
 In_Word11 when "1011",
 In_Word12 when "1100",
 In_Word13 when "1101",
 In_Word14 when "1110",
 In_Word15 when others;

END rtl;

20. word_mux3.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_mux3 model *****
-- external ports
ENTITY word_mux3 IS PORT (
 A : IN std_logic_vector(15 downto 0);

251

 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);
 Out_word : Out std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END word_mux3;

-- internal structure
ARCHITECTURE rtl OF word_mux3 IS
BEGIN
process (A, B, C, Sel)
begin
case sel is
 when "00" => Out_word <= A;
 when "01" => Out_word <= B;
 when others => Out_word <= C;
end case;
end process;
END rtl;

21. word_mux4.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_mux4 model *****
-- external ports
ENTITY word_mux4 IS PORT (
 A : IN std_logic_vector(15 downto 0);
 B : IN std_logic_vector(15 downto 0);
 C : IN std_logic_vector(15 downto 0);
 D : IN std_logic_vector(15 downto 0);
 Out_word : Out std_logic_vector(15 downto 0);
 Sel : IN std_logic_vector(1 downto 0)
);
END word_mux4;

-- internal structure
ARCHITECTURE rtl OF word_mux4 IS
BEGIN
process (A, B, C, D, Sel)
begin
case sel is
 when "00" => Out_word <= A;
 when "01" => Out_word <= B;
 when "10" => Out_word <= C;
 when others => Out_word <= D;
end case;
end process;
END rtl;

252

22. word_reg_single.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_reg_single model *****
-- external ports

ENTITY word_reg_single IS PORT (
 Clock : IN std_logic;
 Data_In : IN std_logic_vector (15 downto 0);
 Data_out : OUT std_logic_vector (15 downto 0);
 Enable : IN std_logic;
 Resetn : IN std_logic;
 Scan_Data_In : IN std_logic;
 Scan_Enable : IN std_logic
);
END word_reg_single;

-- internal structure
ARCHITECTURE structural OF word_reg_single IS

-- COMPONENTS

COMPONENT scan_reg
PORT (
 clk : IN std_logic;
 data_in : IN std_logic;
 data_out : OUT std_logic;
 enable : IN std_logic;
 resetn : IN std_logic;
 scan_data_in : IN std_logic;
 scan_enable : IN std_logic
);
END COMPONENT;

-- SIGNALS
SIGNAL Buf_Data_out : std_logic_vector(14 downto 0);

-- INSTANCES
BEGIN
Data_out(0) <= Buf_Data_out(0);
Data_out(1) <= Buf_Data_out(1);
Data_out(2) <= Buf_Data_out(2);
Data_out(3) <= Buf_Data_out(3);
Data_out(4) <= Buf_Data_out(4);
Data_out(5) <= Buf_Data_out(5);
Data_out(6) <= Buf_Data_out(6);
Data_out(7) <= Buf_Data_out(7);
Data_out(8) <= Buf_Data_out(8);
Data_out(9) <= Buf_Data_out(9);
Data_out(10) <= Buf_Data_out(10);
Data_out(11) <= Buf_Data_out(11);

253

Data_out(12) <= Buf_Data_out(12);
Data_out(13) <= Buf_Data_out(13);
Data_out(14) <= Buf_Data_out(14);

scan_reg_1 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(1),
 data_out => Buf_Data_out(1),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(0),
 scan_enable => Scan_Enable
);
scan_reg_2 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(2),
 data_out => Buf_Data_out(2),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(1),
 scan_enable => Scan_Enable
);
scan_reg_3 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(3),
 data_out => Buf_Data_out(3),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(2),
 scan_enable => Scan_Enable
);
scan_reg_4 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(4),
 data_out => Buf_Data_out(4),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(3),
 scan_enable => Scan_Enable
);
scan_reg_6 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(5),
 data_out => Buf_Data_out(5),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(4),
 scan_enable => Scan_Enable
);
scan_reg_7 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(6),
 data_out => Buf_Data_out(6),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(5),
 scan_enable => Scan_Enable

254

);
scan_reg_8 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(7),
 data_out => Buf_Data_out(7),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(6),
 scan_enable => Scan_Enable
);
scan_reg_9 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(8),
 data_out => Buf_Data_out(8),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(7),
 scan_enable => Scan_Enable
);
scan_reg_10 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(9),
 data_out => Buf_Data_out(9),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(8),
 scan_enable => Scan_Enable
);
scan_reg_11 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(10),
 data_out => Buf_Data_out(10),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(9),
 scan_enable => Scan_Enable
);
scan_reg_12 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(11),
 data_out => Buf_Data_out(11),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(10),
 scan_enable => Scan_Enable
);
scan_reg_13 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(12),
 data_out => Buf_Data_out(12),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(11),
 scan_enable => Scan_Enable
);
scan_reg_14 : scan_reg PORT MAP(
 clk => Clock,

255

 data_in => Data_In(13),
 data_out => Buf_Data_out(13),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(12),
 scan_enable => Scan_Enable
);
scan_reg_15 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(14),
 data_out => Buf_Data_out(14),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(13),
 scan_enable => Scan_Enable
);
scan_reg_16 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(15),
 data_out => Data_out(15),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Buf_Data_out(14),
 scan_enable => Scan_Enable
);
scan_reg_5 : scan_reg PORT MAP(
 clk => Clock,
 data_in => Data_In(0),
 data_out => Buf_Data_out(0),
 enable => Enable,
 resetn => Resetn,
 scan_data_in => Scan_Data_In,
 scan_enable => Scan_Enable
);
END structural;

23. word_set.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** word_set model *****
-- external ports
ENTITY word_set IS PORT (
 In_word : IN std_logic_vector (15 downto 0);
 set_op : IN std_logic_vector (2 downto 0);
 set_out : OUT std_logic
);
END word_set;

-- internal structure
ARCHITECTURE rtl OF word_set IS

component zero_test
PORT (
 In_word : in std_logic_vector(15 downto 0);

256

 zero_flag : OUT std_logic
);
END component;
signal zero_flag : std_logic;

begin
process (In_word, set_op, zero_flag)
begin
case set_op is
 when "000" => set_out <= zero_flag;
 when "001" => set_out <= (not(In_word(15)) or zero_flag);
 when "010" => set_out <= not(In_word(15)) and not(zero_flag);
 when "011" => set_out <= (In_word(15) or zero_flag);
 when "100" => set_out <= In_word(15);
 when others => set_out <= not(zero_flag);
end case;
end process;
zero_test1 : zero_test port map (
 In_word => In_word,
 zero_flag => zero_flag
);

END rtl;

24. zero_test.vhd
LIBRARY IEEE;
USE IEEE.std_logic_1164.all;

-- ***** zero_test model *****
-- external ports
ENTITY zero_test IS PORT (
 In_word : in std_logic_vector(15 downto 0);
 zero_flag : OUT std_logic
);
END zero_test;

-- internal structure
ARCHITECTURE rtl OF zero_test IS
begin

process (In_word)
begin
 if (In_word = "0000000000000000") then
 zero_flag <= '1';
 else zero_flag <= '0';
 end if;
end process;

END rtl;

257

APPENDIX E: GLOSSARY

BGA Ball Grid Array

CFTP Configurable Fault-Tolerant Processor

COTS Commercial Off the Shelf

Coregen CORE generator

CPLD Complex Programmable Logic Device

ESSD Error Syndrome Storage Device

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IAR Interrupt Address Register

ISR Interrupt Service Routine

LEO Low-Earth Orbit

Mem Memory

NPS Naval Postgraduate School

Opcode Operation code

RADHARD Radiation Hardened

RAM Ramdom-Access Memory

RFE Return From Exception

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

SEB Single Event Burnout

SEE Single Event Effects

SEL Single Event Latchup

258

SEP Single Event Phenomenon

SERB Space Experiment Review Board

SEU Single Event Upset

SOC System On a Chip

SPLD Sequential (or Simple) Programmable Logic Device

STP Space Test Program

TMR Triple Modular Redundancy

VHSIC Very High Speed Integrated Circuit

VDHL VHSIC Hardware Description Language

WB Write Back

259

LIST OF REFERENCES

1. Lashomb, Peter A., “Triple Modular Redundant (TMR) Microprocessor System
for Field Programmable gate Array (FPGA) Implementation,” Master’s Thesis,
Naval Postgraduate School, Monterey, California, March 2002.

2. “Single Event Latchup”
http://www.aero.org/seet/primer/singleeventlatchup.html, October 2003.

3. Richard S. Wheatley, “Microcontrollers vs. Soft–Core Processors,”
http://www.agslab.cocse.unf.edu/projects/class/summer2001/eel4905/

4. Per Holmberg, “Searching the Ideal Core for FPGAs,”
http://www.xilinx.com/pci/searching.pdf, March 2003.

5. Johnson, Steven A., “Implementation of a Configurable Fault Tolerant Processor
(CFTP),” Master’s Thesis, Naval Postgraduate School, Monterey, California,
March 2003.

6. “VirtexTM 2.5V Field Programmable Gate Arrays,” Xilinx Data Sheet DS003-1,
San Jose, California, October 2003.

7. Hennessy, John L. and Patterson, David A., Computer Architecture: A Quantita-
tive Approach, Morgan Kaufmann, San Francisco, California, 1990.

8. Clark, Kenneth A., “The Effect of Signal Event Transients on Complex Digital
Systems,” Doctoral Dissertation, Naval Postgraduate School, Monterey, Califor-
nia, June 2002.

9. Ebert, Dean A., “Design and Development of a Configurable Fault Tolerant Proc-
essor (CFTP) for Space Applications,” Master’s Thesis, Naval Postgraduate
School, Monterey, California, June 2003.

10. Xilinx answer database
http://www.xilinx.com/support/searchtd.htm, October 2003.

11. ISE 5 In–Depth Tutorial
ftp://ftp.xilinx.com/pub/documentation/ise5_tutorials/ise5tut.pdf, September
2003.

12. “Single Event Effects Testing of the Intel Pentium III (P3) Microprocessor”
http://klabs.org/DEI/Processor/386_486/Radiation/pentium/howard_see_symp02.
pdf, November 2003.

260

THIS PAGE INTENTIONALLY LEFT BLANK

261

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, ECE Department, John P. Powers
Naval Postgraduate School
Monterey, California

4. Professor Herschel H. Loomis
Naval Postgraduate School
Monterey, California

5. Professor Alan A. Ross
Naval Postgraduate School
Monterey, California

6. Doctor Kenneth A. Clark
Naval Research Laboratory
Washington, DC

7. LCDR Joe Reason, USN

National Reconnaissance Office
Chantilly, Virginia

8. CPT Brian Bailey, USAF

National Reconnaissance Office
Chantilly, Virginia

9. 1st Lt Rong Yuan, TWAF

Air Force 499 Wing
Hsinchu, Republic of China (Taiwan)

